Search published articles


Showing 4 results for Behnam

B. Behnam, M.h. Sebt, H.m. Vosoughifar,
Volume 4, Issue 2 (June 2006)
Abstract

By identifying the damage index of a structure, in addition to a correct understanding from real behavior of the structure, the required criterion for strengthening would be given. Researchers have given many relations for determination of damage index but such relations have been based upon laboratory methods which challenge their usage in a broad term. In this paper two new methods are given for calculation of damage index. Surveying the first crack limit and total structure failure is based upon the formation of plastic joints in the first column and basic floor columns. To give a qualitative simple and functional damage index, the functional method was given in the form of a qualitative method with statistical analysis and collection of different views. Using this method is very simple and meantime offers suitable accuracy. With a numerical study on three models it was made clear that the difference of new method with amended method of Papadopolos in approximate 3%. This shows that given qualitative method is suitable to be used in a broad terms.
Nader Shariatmadari, Behnam Askari Lasaki, Hasan Eshghinezhad, Behzad Askari,
Volume 14, Issue 7 (Transaction B: Geotechnical Engineering 2016)
Abstract

The main purpose of this study is to investigate the influence of urban solid waste leachate on the mechanical properties of the soil. Order to provide a more accurate identification of the contaminated soils, Cylindrical specimens of the soil, according to the density curves with different initial conditions (different initial contamination levels) were prepared, then the soil specimens were loaded at different load levels using a direct shear testing equipment and a universal testing machine to apply axial compression on the specimens. By analyzing the results, the stress-strain and failure behavior of the soil specimens containing different percentages of the solid waste leachate was evaluated. The most important result was reducing the mechanical properties of the soil contaminated with different percentages of solid waste. The results of adding lower quantities of leachate, is far more significant compared to the received results from adding higher amounts of leachate.


Behrouz Behnam,
Volume 14, Issue 8 (Transaction A: Civil Engineering 2016)
Abstract

Observations and investigations have proved that using traditional fire curves such as stand-ard fire curves and natural fire curves should be limited to small/medium compartments. In addition, when using the traditional fire curves, a uniform temperature is assumed throughout the compartment. However, for large open compartments, assuming uniform temperature is not compatible with real fires. To overcome this limitation, a non-uniform fire method named as travelling fire is employed as an alternative. A study is performed here on a seismic-damaged large plan 3-story reinforced concrete structure designed to meet the life safety level of performance when exposed to a travelling fire. To draw a comparison, the structural fire analysis is also performed using the traditional methods. The results show a notable difference – while the fire resistance based on the travelling fire is around 91 minutes, it is around 140 minutes when based on a uniform temperature. This shows that the structure studied is more susceptible to failure when subjected to the non-uniform fire than the uniform fire.


Dr. Abazar Asghari, Mr. Behnam Azimi Zarnagh,
Volume 15, Issue 5 (Transaction A: Civil Engineering 2017)
Abstract

For years, coupling shear walls have been used in  the mid to high-rise buildings as a part of lateral load- resisting system mostly, because of their ability to control the displacement of structures, Recently by changing the design codes from strength based design to performance based  design, nonlinear behavior of coupled walls became important for practical engineers, so that many researchers  are looking for ways to improve and also predict the behavior of coupled walls under severe earthquakes. This paper  presents  the results of   linear,  nonlinear static ( pushover)  and  nonlinear inelastic time-history analysis  of a 10-story  two- dimensional coupling shear wall (CSW) which is perforated with 3 different patterns which are taken from considering  the S22 stress of shell elements used for modeling shear walls,  nonlinear static analysis results confirm that perforation can increase the response modification  factor of coupled walls up to 33 percent and also the results of  linear analysis and design indicate that perforation can reduce the amount of reinforcement of coupling beams and other frame's  structural components. Also results of nonlinear inelastic time history  analysis confirm that by using perforation patterns the base shear- roof displacement hysteretic response get better and the  systems with perforation patterns can absorb more energy under severe earthquakes.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb