Search published articles


Showing 4 results for Abdi

Mahmood R. Abdi, Ali Parsapajouh, Mohammad A. Arjomand,
Volume 6, Issue 4 (December 2008)
Abstract

Clay soils and their related abnormal behavior such as excessive shrinkage, swelling, consolidation settlement and cracking on drying has been the subject of many investigations. Previous studies mainly evaluated the effects of additives such as lime, cement and sand on these characteristics. Initial results indicated that the soil characteristics were improved. However, reportedly in many cases, these additives resulted in a decrease in plasticity and increase in hydraulic conductivity. As a result, there has been a growing interest in soil/fiber reinforcement. The present investigation has focused on the impact of short random fiber inclusion on consolidation settlement, swelling, hydraulic conductivity, shrinkage limit and the development of desiccation cracks in compacted clays. To examine the possible improvements in the soil characteristics, samples consisting of 75% kaolinite and 25% montmorillonite were reinforced with 1, 2, 4 and 8 percent fibers as dry weight of soil with 5, 10 and 15mm lengths. Results indicated that consolidation settlements and swelling of fiber reinforced samples reduced substantially whereas hydraulic conductivities increased slightly by increasing fiber content and length. Shrinkage limits also showed an increase with increasing fiber content and length. This meant that samples experienced much less volumetric changes due to desiccation, and the extent of crack formation was significantly reduced.
M.r. Abdi, S. A. Sadrnejad, M.a. Arjomand,
Volume 7, Issue 4 (December 2009)
Abstract

Large size direct shear tests (i.e.300 x 300mm) were conducted to investigate the interaction between clay reinforced with geogrids embedded in thin layers of sand. Test results for the clay, sand, clay-sand, clay-geogrid, sandgeogrid and clay-sand-geogrid are discussed. Thin layers of sand including 4, 6, 8, 10, 12 and 14mm were used to increase the interaction between the clay and the geogrids. Effects of sand layer thickness, normal pressure and transverse geogrid members were studied. All tests were conducted on saturated clay under unconsolidated-undrained (UU) conditions. Test results indicate that provision of thin layers of high strength sand on both sides of the geogrid is very effective in improving the strength and deformation behaviour of reinforced clay under UU loading conditions. Using geogrids embedded in thin layers of sand not only can improve performance of clay backfills but also it can provide drainage paths preventing pore water pressure generations. For the soil, geogrid and the normal pressures used, an optimum sand layer thickness of 10mm was determined which proved to be independent of the magnitude of the normal pressure used. Effect of sand layers combined with the geogrid reinforcement increased with increase in normal pressures. The improvement was more pronounced at higher normal pressures. Total shear resistance provided by the geogrids with transverse members removed was approximately 10% lower than shear resistance of geogrids with transverse members.
Mahmoud Reza Abdi,
Volume 9, Issue 2 (June 2011)
Abstract

The use of various slags as by-products of steel industry is well established in civil engineering applications. However, the use

of BOS slag in the area of soil stabilization has not been fully researched and developed despite having similar chemical

composition and mineralogy to that of Portland cement. This paper reports on efforts to extend the use of BOS slag to soil

stabilization by determining possible beneficial effects it may have on compressive strength and durability. Results of laboratory

tests conducted on kaolinite samples stabilized with lime and treated with various percentages of BOS slag are presented. Tests

determined strength development of compacted cylinders, moist cured in a humid environment at 35° C and durability by freezing

and thawing method. Results showed that additions of BOS slag to kaolinite samples singularly or in combination with lime

increased unconfined compressive strength and durability. These characteristics were significantly enhanced by the concurrent

use of lime and BOS slag for stabilization of kaolinite.


Mahmood Reza Abdi, Hamed Mirzaeifar,
Volume 14, Issue 4 (Transaction A: Civil Engineering 2016)
Abstract

Abstract To meet construction demands, reinforcement and stabilization methods have been widely used to improve properties and mechanical behavior of clays. Although cement stabilization increases soil strength, at the same time reduces ductility which is of paramount importance in roads, landfill covers, etc. In current study, kaolinite was stabilized with 1, 3 and 5% cement and mixed with 0.05, 0.15, 0.25 and 0.35% polypropylene fibers to increase ductility. Samples were cured at 35°C for 1, 7 and 28 days and subjected to unconfined compression tests. Results showed that inclusion of discrete fibers to uncemented and cemented kaolinite reduced stiffness and the loss of post-peak strength and changed brittle behavior of cemented samples to a more ductile behavior. Cement and fiber contents as well as curing period were found to be the most influential factors and fiber – soil interaction was influenced by binding materials.



Page 1 from 1     

© 2019 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb