International Journal of Civil Engineering
http://ijce.iust.ac.ir
International Journal of Civil Engineering - Journal articles for year 2004, Volume 2, Number 1Yektaweb Collection - http://www.yektaweb.comen2004/3/11STAGE DISCHARGE RELATIONSHIPS FOR TRIANGULAR WEIR
http://www.iust.ac.ir/ijce/browse.php?a_id=1058&sid=1&slc_lang=en
The flow characteristics of triangular weir are studied under free and submerged flow condition. This paper reports the results of an investigation carried out to establish the stage-discharge relationship for sharp and broad crested triangular weir. The stage-discharge relationships are deduced by the application of the theorem of the dimensional analysis and the incomplete self-similarity theory coupled with experimental data. Masoud Ghodsian MATHEMATICAL MODEL OF RIVER BED VARIATION PREDICTION AT ALLUVIAL RIVERS UNDER GRADUALLY VARIED FLOW CONDITION
http://www.iust.ac.ir/ijce/browse.php?a_id=1059&sid=1&slc_lang=en
In this research a mathematical model was developed to study bed elevation variation of alluvial rivers. It utilizes two principal modules of hydraulics and sediment transport for simulation purposes. SDAR (Scour and Deposition model of Alluvial Rivers) is a new model with both one and semi-two dimensional (S-2D) computational schemes. It is regarded S-2D in a sence that lateral variation of velocity, hydraulic stresses, and geometrical specifications are achieved by dividing the main channel into serveral stream tubes. In order to overcome the existing limitations, a new idea of reachwise stream tube concept was also introduced. This allows to include branch connections and withdrawal points across the tube barriers. Sediment routing and bed variation calculations are accomplished along each river strip desigated by virtual interfaces of the tubes. Presently, quasi-steady gradually varied flows are processed by the model. It should also be emphasised that this version is only valid for alluvial rivers composed of noncohesive bed material. To assess the model, several river cases and laboratory data base were used. During calibration runs, the ability of model in longitudinal and transversal bed profile simulation and armor layer development predection were especially detected. Results of simulation are also compared with the results of well-known models, e.g. HEC-6, GSTARS-2, and FLUVIAL-I2. It was found that the ability of model in simulating bed variation is noticeably increased when S-2D concept is introduced. Indeed, the comparative validity tests confirm SDAR"s promising functioning in facing with complex real engineering cases. Obviously more article discussions would bring oppurtunities to demonestrate it"s technical cappabilities profoundaly.
A. ArdeshirTLME-DEPENDENT BEHAVIOUR OF CONCRETE COLUMNS CONTAINING SILICA FUME
http://www.iust.ac.ir/ijce/browse.php?a_id=5&sid=1&slc_lang=en
This paper presents the long-term deformations of reinforced high-strength concrete columns subjected to constant sustained axial forces. The objective of the study was to investigate the effects of binder systems containing different levels of silica fume on time-dependent behaviour of high-strength concrete columns. The experimental part of the work focused on concrete mixes having a fixed water/binder ratio of 0.35 and a constant total binder content of 500 kg/m3. The percentages of silica fume that replaced cement in this research were: 0%, 6%, 8%, 10% and 15%. The mechanical properties evaluated in the laboratory were: compressive strength secant modulus of elasticity strain due to creep and shrinkage. The theoretical part of the work is about stress redistribution between concrete and steel reinforcement as a result of time-dependent behaviour of concrete. The technique used for including creep in the analysis of reinforced concrete columns was age-adjusted effective modulus method. The results of this research indicate that as the proportion of silica fume increased, the short-term mechanical properties of concrete such as 28-day compressive strength and secant modulus improved. Also the percentages of silica fume replacement did not have a significant influence on total shrinkage however, the autogenous shrinkage of concrete increased as the amount of silica fume increased. Moreover, the basic creep of concrete decreased at higher silica fume replacement levels. Drying creep (total creep - basic creep) was negligible in this investigation. The results of the theoretical part of this researchindicate that as the proportion of silica fume increased, the gradual transfer of load from the concrete to the reinforcement decreased and also the effect of steel bars in lowering the concrete deformation reduced. Moreover, the total strain of concrete columns decreased at higher silicafume replacement levels. MAZLOOM M.INVESTIGATION OF NONLINEAR BEHA VIOR OF T -SHAPED SHEAR WALLS
http://www.iust.ac.ir/ijce/browse.php?a_id=6&sid=1&slc_lang=en
Structural walls are used extensively in moderate- and high-rise buildings to resist lateral loads induced by earthquakes. The seismic performance of many buildings is, therefore, closely linked to the behavior of the reinforced concrete walls. The analytical models used in this paper are developed to study the push-over response of T-shaped reinforced concrete walls andinvestigate the influence of the flange walls on laterally loaded walls and nonlinear behavior of shear walls, namely strength, ductility and failure mechanisms. A layered nonlinear finite element method is used to study the behavior of T-shaped and rectangular (barbell) shear walls. This paper introduces a computer program to practically study three-dimensional characteristics of reinforced concrete wall response by utilizing layered modeling. The program is first verified bysimulated and reported experimental response of 3-D reinforced concrete shear walls. Subsequently, a study considering eighteen analytical test specimens of T-shaped and barbell shear walls is carried out. Finally, based on analytical results, a new equation for minimum ratio of shear wall area to floor-plan area is proposed. MORTEZAEI A.R.INFLUENCE OF ENCAPSULATED GEOGRID-SAND SYSTEM ON BEARING CAPACITY AND SETTLEMENT CHARACTERISTICS OF REINFORCED CLAY
http://www.iust.ac.ir/ijce/browse.php?a_id=1060&sid=1&slc_lang=en
A study of bearing capacity and compressibility characteristics of cohesive soil, reinforced by geogrid and supporting square footing loads has been conducted. The lack of adequate frictional resistance between clay and reinforcing elements was compensated by using a thin sand layer (lens) encapsulating the geogrid sheet. In this way, tensile forces induced in the geogrid were transferred to the bulk clay medium through the sand particles and soil reinforcement was improved Experiments were conduced on two sets of specimens, one set of 1 x 1 x 1 m dimension and the footing size of 19 x 19 cm (series A), and the other set of 0.15 x 0.15 x 0.15 m dimension and the footing size of 3.7 x 3.7 cm (series B). The loading systems for the above specimens were stress controlled and strain controlled respectively. All specimens were saturated and presumably loaded under an undrained condition. The results qualitatively confirmed the effectiveness of the sand lens in improving the bearing capacity and settlement characteristics of the model footing. In series A, the maximum increase in the bearing capacity due to the presence of the sand lens was 17% whereas in series B, the amount of increase was 24%. The percentage reductions in the settlement for these results were 30% and 46% respectively.
H. GhiassianDEVELOPMENT OF OPTIMAL MODELS FORBRIDGE MANAGEMENT SYSTEM
http://www.iust.ac.ir/ijce/browse.php?a_id=8&sid=1&slc_lang=en
In this paper, optimal bridge management system models have been presented. These optimization models are capable of allocating limited resources to the bridge preservation schemes in order to establish the optimal time of completing the activities. Bridge-based activities are divided into two main groups: repair projects, and maintenance activities and both models are presented in this paper. Particular attention has been made to optimize the management of the two system activities. The dynamic programming approach was utilized to formulate and analyze the two models. The developed models are found to be more accurate and faster than the previous ones. SAFFAR ZADEH M.