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Abstract

In this paper, a bi-level decision making model is proposed for a vehicle routing problem with multiple decision-makers
(VRPMD) in a fuzzy random environment. In our model, the objective of the leader isto minimize total costs by deciding the
customer sets, while the follower is trying to minimize routing costs by choosing routes for each vehicle. Demand for each item
has considerable uncertainty, so customer demand is considered a fuzzy random factor in this paper. After setting up the bi-
level programming model for VRPMD, a bi-level global-local-neighbor particle swarm optimization with fuzzy random
simulation (bglnPSO-frs) is developed to solve the bi-level fuzzy random model. Finally, the proposed model and method are
applied to construction material transportation in the Yalong River Hydropower Base in China to illustrate its effectiveness.

Keywords: Vehicle routing optimization, Multiple decision-makers, Construction material transportation, Fuzzy random

variable, Particle swarm optimization.

1. Introduction

Construction material transportation plays an irtgoar
role in construction projects, especially in laspale
construction projects. In recent years, along witbnomic
globalization and the rapid development of the dtic
industry, transportation and distribution has bgeadually
paid serious attention in practice. The vehicle tingu
problem (VRP) which is the key to transportationd an
distribution requires an economic distribution lifer a
vehicle starting from the distribution center, sging all
customers and returning to the distribution ces@rthat
goods are delivered to customers at the lowesstiogicost.

In recent years, VRP has attracted more attentizh a
been studied both in scientific and practical fel®uring
the last fifty years, many different formulationavie been
proposed. Since the VRP was first proposed by Banzi
and Ramser [1], it has been furthered by many other
scholars. At present, there are three main variahthe
classical vehicle routing problem: VRPs with baakka
[2, 3], VRPs with pickup and delivery [4, 5] and PR
with time window [6, 7, 8]. All the new developmeaot
extensions based on the classic VRP are significant
dealing with the complicated practical problems.

It can be seen that most studies made before hawve n
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more than one decision-maker, using multiple object
programming. However, in the real world, it is ol
that there are many participants typically involved
construction material transportation, such as seppl
factories, logistics companies or transport comgmni
customers and so forth. In the actual construatiaterial
transportation projects, participants involved ianc
inevitably have all kinds of conflicts. These cact8 may
have a big influence on the total construction malte
transportation costs, because all the participhetsng to
different stakeholder and they decide the impleatesr
of the project based on their own interests. Ifrtheutual
influences are neglected, it will certainly affethe
eventual results. In addition, one of the most irtgott
formulations for VRP is the formulation introducdxy
Fisher and Jaikumar who proved that VRP constraiats
be divided into two sets [9]. According to the theof
Fisher and Jaikumar, we can use bi-level programrton
deal with the VRP. Thus, based on previous studiéh,
the consideration of more decision-makers in pcactive
proposed a new model using bi-level programmingttier
VRP with multiple decision-makers (VRPMD).

Much of the past research on VRP has been limied t
a deterministic model. However, there are many
uncertainties in the real world. For example, weath
delays play an important role for projects carr@d in
harsh environmental conditions and therefore cartrésg
as fuzzy variables [10]. Thus, in order to consyaget
closer to actual production, uncertainty in the VR&s
been paid more attention in recent years. Teodérand
Pavkovt developed a model for vehicle routing when
demand at the nodes is fuzzy [11]. Zheng and Lao al
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designed a fuzzy optimization model for the VRP rghe
travel times were assumed to be fuzzy variableq.[12
Many scholars have also studied randomness in &ie.V
Based on previous studies, Gendreau et al diccetitre
review on stochastic vehicle routing problems and
provided a scientific research summary on stochasti
vehicle routing problems [13]. However, there soabther
uncertain information in the VRP, which has seldoaen
considered in the past. Fuzzy random theory has bee
applied in many fields as in [14, 15, 16, 17], thére has
been little research which focused on the fuzzydoam
factors which exist in practical VRP.

In summary, based on previous studies, a multiple
decision-maker vehicle routing problem (VRPMD) in a
fuzzy random environment is proposed. In the predos
formulation, the VRPMD is considered a bi-level giem
with two decision-makers. The VRPMD model has two
layers, in which the leader deals with the geneedli
assignment problem, and the follower deals with the
optimal route selection problem. In the model, @bkts
involved in the VRPMD have been considered and
classified clearly using bi-level programming. Fuzz
random theory is used to describe VRPMD customer
demands. The reason for the use of fuzzy randoormthe
the VRPMD is outlined in section 2.1.2. From this
investigation it can be concluded that the VRPMDhwi
fuzzy random variables is closer to reality and caal
with complicated practical problems.

The remainder of this paper is organized as folldws
section 2, the key problems in the bi-level VRPME2 a
described, including the classical VRP, multipléojsats

\‘ veh|cIeK -

=

vehicle 2

and uncertain environment. Then the VRPMD
mathematical formulation model is presented inisac3.

In section 4, a bi-level global-local-neighbor paet
swarm optimization with fuzzy random simulation
(bgInPSO-frs) is advanced to solve the model. ttige 5,

an application of the model to a construction mater
transportation problem at the Yalong River Hydropow
Base in China is presented. Concluding remarksirare
Section 6.

2. Key Problems Statement
2.1. Classical VRP

The VRP is a well-known NP-hard problem in
combinatorial optimization problems. Generally, time
classical VRP, a set of customers located in varities
is given with each customer having their own dersand
Vehicles of the same condition at the depot dely®vds
to these customers with the requirement that theay and
end at the depot. The objective of the classicaPViRto
minimize total costs by designing an optimal delve
route for each vehicle. Delivery vehicles usualbed to
meet the following conditions: (1) Serve all cusérm
using the least vehicles; (2) Each customer isesktwy
only one vehicle once; (3) Each vehicle starts andss at
the depot; (4) Total customer demand on each mareot
exceed the load capacity of the vehicle. A gendiggram
of the classical VRP is in Fig. 1.
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Fig. 1 A general illumination of the classical VRP

These days, the VRP is a common problem in almost

every industry such as supply chain and the tramspo
industry but it is even more important in constiwct
projects, because unsuitable transportation razgadead

to significant losses, especially in large scalastaction
projects, such as the Yalong River Hydropower Biase
China.
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2.2. Multiple decision-makers

In Fisher and Jaikumar's study, they prove that the
constraints of VRP can be divided into two setse Tihst
set are the constraints of a generalized assignment
problem, which ensure that all the vehicles begid and
at the depot, each customer is served by somelgehitd
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the load assigned to a vehicle is within capacithe
second set of constraints corresponds to a trayelin
salesman problem for finding an optimal route facle
vehicle to serve all the customers [9].

Developed from Fisher and Jaikumar’s theory, wd fin
there can be more than one decision-maker in th®,VR
and bi-level programming can help deal with the
interactive influence from two decision-makers ineo
model. Bi-level programming problems were introdiice
by Von Stackelberg (1952) [18] and involve two
optimization problems where the constraint regidrthe
2rst level problem is implicitly determined by ahet
optimization problem. In this paper, supplier faite and
transport companies (or logistics companies)
considered as the two independent decision-makerhé
VRPMD. Their bi-level relationship in practice cde
explained as follows: in practical construction enétl
transportation, (1) one supplier factory employse on

are

transport company to supply goods for its custom@s

the supplier factory pursues a total cost mininiizgt
including the serving cost (e.g. uploading cosipading
cost) and the traffic expense for the transport pamy,
while (3) the transport company is only concernéith Wwis
traffic expense including (e.g. driver's pay, véhic
expenses and gas); (4) the supplier factory dedls the
generalized assignment problem, while the transport
company deals with the optimal route selection |enob

(5) he can only influence, but not control the sfort
company’'s route selection, and at the same time the
transport company can have to make their routectiete

for each vehicle based on customer clusters dedigléte
supplier company. This interaction game is reprieskeas

a bi-level programming problem [19]. In this papalt,the
costs involved in the VRPMD have been consideredl an
classified clearing using bi-level programming. § Hii-
level relationship can be seen clearly in Fig. 2.
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the customers in each cluster

A

[ Follower ] = [Trans port compal}y

The lower level
Fig. 2 The structure of bi-level relationship in the VRBM

2.3. Uncertain environment

There are many uncertainties in the real world. In
construction engineering projects, the uncertantige
especially rich and diverse, as can be seen in4@021,
22, 23]. Thus, in order to move closer to actuadpiction,
uncertainties must be considered in the VRPMD for
construction material transportation.

Though a great of research has considered unugrtai
in the VRP, there are some uncertainties that lsaldom
been considered. For example, customer demandi&lys
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determined using surveys or interviews, or desdriigng
ambiguous linguistic statements, such as “it isual3oton”
or “it is no less than 1 ton”. Stochastic factors also
involved in the VRPMD: (1) if one point usually ha®re
than one person in charge, the choice of resposdent
stochastic; (2) because of special circumstanceb ss
the season, the weather, and the attitude of relgmbs
(optimistic or pessimistic); the customers usuadiive
different demand quantities. That is to say, thstamer
demand statements include both fuzzy and stochastic
factors. Because of this, VRPMD needs to be stuitiel
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fuzzy random environment.

In recent years, more fuzzy random theory studé&® h
been conducted [24, 25, 26, 27]. In the VRPMD, the
demand for each item is the most common factor lhat
considerable uncertainty. In this paper, demand is
considered a fuzzy random variable. Fuzzy randaorth
is a useful tool for dealing with the type of VRPMD
uncertainties under a fuzzy random environmentthia
paper, when considering the uncertainties in théMB,
Kwakernaak's [28, 29] theory and the further
developments by Kruse and Meyer [30] were chosen to
describe and deal with the uncertainty.

3. Modelling
3.1. Notations and assumptions

In order to facilitate the description of the prerol, the
following notions are introduced.

Sets

V : set of vertexy ={0,1,...,n} and vertex O refers to

the depot.
C: set of customersC =V /{0} .

S: subset of/, and SZ @.
E: set of index pairs, sucfl, j)JE means customér

must precede customdr in the route.
H: set of vehiclesH ={L, 2,..K}.

Indices and parameters
N: number of customers.

i/ ] : customer indexi/ j =1,...,n.
K : number of vehicles.
K: vehicle index,k =1,2,...K .

di : the demand of customer, and it is assumed to be
fuzzy random.

G : cost of the seed customprfrom the depot.

G : cost of vehiclek for serving customerj .

Clj : the routing cost between customér and

customer | .
Q: the vehicle capacity.
Decision variables

4 - a binary variable indicating that whether custome
| is a seed customer. If customgris a seed customer,

then z, =1, else, z, =0.

X : a binary variable indicating that whether custome
is served by vehicleK. If x, =1, then customer] is
served by vehiclé ; otherwise,x, =0.

Yij: a binary variable indicating that whether edge
(i,]) is in the route. Ify; =1, then edge(, j) is in the
route; otherwisey; =0.

In the VRPMD, a route is defined as a sequence of
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locations that a vehicle must visit along with gexvice it
provides [31]. Customer orders cannot be split. ezally,
until the routes reach capacity or time limits,tounsers are
assigned a single route. Then a new customerestsel as
a seed customer for another new route and the gsoce
continues. A seed customer is defined as a custaher
is not yet assigned a route and is used to irdBali new
route. To model the bi-level formulation for thehide
routing problem in a fuzzy random environment, the
following assumptions are made:

(1) The capacity of each vehicle is the same;

(2) The demand of each customer is consideredzy fuz
random variable;

(3) The vehicle must start and finish at the degoad
there is only one depot;

(4) Each customer is served by a single vehicle and
seed customer is the start of a new route;

(5) Time is enough for each vehicle serving all its
customers;

(6) Different vehicles are assigned different labor
levels.

3.2. Model formulation

Objective functions

In general, construction material transportation
involves a great deal of human, material, and firen
resources. Thus, decision makers try to minimizelto
construction material transportation costs in laspale
construction projects. The mathematical problemtds
construct a low cost, feasible set of routes faheaehicle,
so, the objective of the leader to find the lowesdt with a
feasible set of routes in the VRPMD bi-level foridn
in a fuzzy random environment is met. The matherahti

objective to minimize total construction material
transportation costs is as follows:

k n k n n.n
MiNGL26% 2 2.6% +2.2.9Y (1)

=1 i= =1 j= i=1j=

G is cost of the seed customerfrom the depot.Z;
is a binary variable indicating that whether custorn is a
seed customer served by vehidie If customeri is a

seed customer served by vehidie then Z; =1; else,

Z; =0. In construction material transportation, thetfirs

k n
part ZZQZ« represents the sum of the seed customers’
k=1 i=1

cost from the depot, including the loading costsb@r
charges) and the transport costs (oil consumptiod a

driver cost).CN- is cost of vehicleK for serving customer

j. Xi is a binary variable indicating that whether

customer is served by vehiclK. If X =1, then

customerj is served by vehicle ; otherwise,X,q- =0.
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k n
zzckixki is the sum of the service cost of vehidie

k=1 j=1
serving customer), most of which is unloading costs
(labor charges). Finally;:Ij is the routing cost between

customei and customerj and yij is a binary variable
indicating that whether edg€i, ) is in the route. If

Y; =1, then edge(i,]) is in the route; otherwise,

Yi =0. ;;qj Yi is the sum of the routing cost between

customerj and customer] , which are mainly transport
costs (oil consumption and driver cost).

Notice: Firstly, according to assumption (6), diéfiet
truck is assigned with different labor level, foxaenple,
truck 1 may have two workers for the unloading jobs
while truck 2 may have six. Thus, the cost of défd

truck serving the same customer is different, nynﬂﬁl is

different when customerj is fixed and vehicleK is
unfixed. SecondlyG associated with binary variable,

is the seed customers’ cost from the depot, inowdhe
uploading cost (labor charges) and the transpatscil

consumption and driver cost), whiqu- associated with
binary variabIeij refers to service cost of vehicle for

serving customerj , most of which is the unloading cost
(labor charges). Thus, there is a need to set twary

variable Z; and X which have different meaning.

Finally, there is not only serving cost in the spartation
network, but also transport costs. Thus, the rgutinst

between edge#i, |) in the routeG; is necessary.

Leader constraints:

Chance constrained programming is a useful tool for
the handling of fuzzy random variables. In pradtica
decision-making processes, decision makers usually
choose a satisfactory solution with an allowed aiert
deviation rather than the optimum solution. For the
VRPMD, because dynamic changes continually happen,
decision makers have to make decisions based enarc
possibility level. According to assumption (2), tthemand
of each customer is a fuzzy random variable. Hees ta
chance-constrained operator is used to deal with th
constraint. The theory concerning, (77, 20.5) can be

found in [32, 33]. Further in reference to [17] ai3d],
this customer demand constraint can be written sest @f
chance-constraints as follows:

=

Pr{mpr{i&.@xk,-sQ}ze,}zm, DkOH (2)

ﬁj is the demand of customér, and it is assumed to

be fuzzy randor‘r*).(kj is a binary variable indicating
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whether Customerj is served by vehicleK . Q is the
vehicle capacity.q{ is set of vehicles. This constraint

ensures that all customers served by vehl¢leannot be
beyond vehicle capacity.

A seed customer is the start of a new route. Each
vehicle can have only one seed customer (one siad)
the number of seed customers must be equal toutim&er
of vehicles. Thus, among all customers, there is and
only one seed customer for each vehicle, and the afu

Z; should be equal to the number of vehicles,
mathematically:

>'z,=1, OKOH. 3)
i=1

K n

22 % =K, (4)
k=1i=1

Z; is a binary variable indicating that whether
customerj is a seed customer served by vehie If
customerj is a seed customer served by vehikle then

z; =1; elsez; =0. K is the number of vehicles.

There are two circumstances which may occur when

serving construction material transportation custianin

the first, each customer demands more than theche&hi
capacity, so every customer is served by no lems two
vehicles, while the other is that each customer ateta
less than the vehicle’s capacity. In this papee, gecond
circumstance is considered. The company decidesnen
vehicle to serve more than one customer to redueeath
costs, and each customer is served by only onecleehi
Mathematically:

sz“xm =1, Gjoc. (5)

C is the set of customers.

Since Z; and X are binary variables, thus:

2, ={0,3, %, =03, OkOH 0i/jOC (6)

H and C are the set of vehicles and customers,
respectively. Z; and Xy are binary variables, and also

decision variables of the upper decision maké&s.helps
decide the seed customers’ cost from the depotelyatime

initial costs G the uploading costs and the transport costs

from leaving the depot to the seed custonsg. helps

decide the serving cost, nameﬁ% the unloading costs for
serving each customer.
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Contractor constraints:

The second set of constraints is the TSP constréont
the customers of each vehicle. The main interesthef
decision maker on the second level is to find optim
routes from these assignments. The dispatcher er th
transport company can be treated as the lower-level
decision makers. They are seriously concerned thi¢h
transportation cost, including driver's pay, vehicl
expenses, gas and so forth. After the customegrassint
is decided by the upper level, their objectiveoigrtinimize
the transportation cost. Mathematical formulation this
objective is as follows:

miniicﬂ Yi (7)

i=1 j=1

C; is the routing cost between customér and

customer ] and Yi is a binary variable indicating that

whether edgg(j, j) is in the route. IfY; =1, then edge

(i, j) is in the route; otherwisg; =0. 2.2.G Yy is the

i=1 j=1
sum of the routing cost between custorhand customer

j , Which are mainly transport costs (oil consumptionl

driver cost).
The route selection job starts after customers baean
assigned:

y, <%, OkOH, 0i/jOc (8)

X4 is a binary variable indicating whether custonjer

is served by vehicl&k.H and C are the set of vehicles

and customers, respectively.

In construction material transportation, each austo
is served by only one vehicle on the route. Itésessary
that each node is entered once and is left once. Th
mathematical formulation is as follows:

;y” =1, 0joc, 9)
Dy, =1, OiOc. (10)

j=1
Sub tour elimination constraints are needed:

Sy, <|8-1, 0SOV, Sz

iV v

(11)

V is set of vertexV ={0,1,...,n} and vertex O refers
to the depot.S is subset ol , and SZ P .

The same withZ; and X, Yj is binary variable:

y, =0.3, Oi/joc (12)
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3.3. General global model

We propose the vehicle routing problem with muéipl
decision-makers (VRPMD). The model of the VRPMD
has two layers, in which the upper level decisicaker,
namely the leader, with the generalized assignment
problem, and the follower deals with the optimalteo
selection problem. Thus, based on the above, a
mathematical formulation for the construction miater
transportation in fuzzy random environment VRPMD as
follows:

n

X+ 226 Y

i=1j=1

3
>
I, '\M’\_
L4
N
DM

k=17j=1

M, z, ={0,13, x, ={0,13, OkOH, 0i/jOC

st. . L
min,2 2.c Y

i=1 j=1

¥i = Xg

Sy, =1 0j0c,
i=1

OkOH, Oi/jOC,

st. iyijzlv gigc,
=1
Y'Yy, <|§-1, 0sOv, szo,

v jov

¥; ={0.1,

0j ov.

In our model, we have considered all the costsluab
in the VRPMD in a better way and classified themain
clear way by the bi-level programming. As for teader’s

k n
objective, the first parEZC.Zm represents the sum of the

=1 i=
seed customers’ cost from the depot, includingldlaeing
costs (labor charges) and the transport costs (oil

k n
consumption and driver cost), the second &EC@XH is
k=1 j=1

the sum of the service cost of vehidfeserving customer

J . most of which is unloading costs (labor chargasy

the final partz G Y is the sum of the routing cost
i=1 j=1

between customei and customer], which are mainly

transport costs (oil consumption and driver coggided
by the follower. The leader can choose the seetbiness
and assign clusters of customers to decide findtgral the

second part of the total cost by his decision e, Z;

and X, but he cannot control the third part. Since

decisions must be feasible and all the constramist be
met, the leader has to consider the constrainis ft® own
and from follower’s perspective. On the other hatieh
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main interest of the follower is to find optimalutes from
these assignments to minimize the transport cdsty Bre
seriously concerned with the transportation costiuding
driver's pay, vehicle expenses, gas and so forfier Ahe
customer assignment is decided by the leader, wiky
choose an optimal route for each vehicle to minintize

transportation cost by decidiny; .

4. Bi-level Glnpso with Fuzzy Random Simulation
(Bglnpso-Frs)

Many heuristic algorithms are used in construction
engineering and several more new heuristic algosth
have been proposed, see [35, 36, 37]. A new eoolaty
heuristic algorithm, called the particle swarm optiation
(PSO), was proposed recently and has proved to be a
powerful competitor in the field of NP-hard problem
optimization [38, 39]. The PSO method has been lyide
used to solve NP-hard problems, as well as bi-level
problems [40, 41]. However, after observation, Hasic
PSO was found to have a very definite weaknesian t
the particles in the swarm tend to cluster rapimyvard
the global best particle which means that the swam
frequently trapped in a local optimum and can nogér
move.

As we known, the VRP is a NP-hard problem and the
VRPMD which is using bi-level programming is more
difficult and complicated. What's more, the undetia
makes the problem even more difficult. Thereforging
traditional algorithm to solve the problem is rgall
difficult. Solving NP-hard discrete optimizationgiems
to optimality is often an immense job requiring yer
efficient algorithms. To deal with this premature
convergence of the classic PSO, a modified appreatd
reinitialize some or all of the particles excepe thlobal
best particle. In this section, we use the stratetppted in
the gInPSO method to develop a bi-level gInPSO with
fuzzy random simulation algorithm (bglnPSO-frs)réach

solutions for problems defined by Modd¥l,. A case

study is then provided to prove the practicality thé
proposed VRPMD model and allow for a brief companis
to prove the efficiency of the proposed algorithm.

4.1. Fuzzy random simulation

For the following constraints,

Pr{wlPr{i&J @ X SQ}ZQ}ZIA in order to check the
feasibility, for given X; and Q, we first generati
random  vectors &' =(a,f,wj,---a)jj )T L j=1,2;--M

independently from (Q according to the probability

measurep;. For any given sampley' [JQ, the technique
of fuzzy random simulation can be applied to chéuk

random constrainD_d; (@)%, <Q . First, generated, (')
=
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from (?j (a)j) according to the probability measuf,

respectively. IfY.d;(@)%; <Q then we can believe that
e

the stochastic constraint is feasible. After a giveimber
of cycles, if no feasible, (o)) are generated, then we say

that the fuzzy random constraint is infeasible. Metbe
the number of occasions on whiehn{ > d x, sQ}zej. By
j=1

the definition of probability measure,

Pr{mpr{ii wX, sQ}zHl}zn, can be estimated by'/m
provided thatyy is large enough. If1'//m =p,, then we say

X4 and Q are feasible. We summarize it as follows:

Sep 1. Generate wj=(a)f,a)",~-wjj)T from Q
according to the probability measure.

Sep 2: Randomly generated, (') from éi(wj)
according to the probability measurer,r=1,2,--P
respectively.

Sep 3: If Z;aj(“)))% =Q, return feasible and go to
<

Step 5.
Sep 4: Repeat the second to third stepsforcycles.
Sep 5: Repeat the first to fourth steps fidr cycles.
Sep6: Let M' be the feasible number. /M =n

return X; andQ are feasible

4.2. Solution representation and decoding method

In this paper, two vectors are used to represent a
solution: the first vector is called the vehicle teec and
the second vector the ranking vector. Followingais
example to describe the coding method.

Example Suppose a company has 3 vehicles numbered
1, 2, 3 that serve 10 customers numbered 1, 2,,-10.
Then one solution as follows:

customers 1 2 3 4 5 6 7 8 9 10
vehiclevector 2 3 1 3 1 1 3 1 2 2
rankingvector 2 3 2 2 3 1 1 4 1 3
This implies the following routes for the 3 vehile
vehiclel 6-3-.5.38

vehicle 2 9.1-.1C

vehicle 3 7.4.2

4.3. Update

The basic elements of the PSO technique are particl
population, velocity, inertia weight, individual sie global,
learning cofficients, and stopping criteria best [42]. In this
paper, the bginPSO-frs algorithm is used to sdieehi-level

model, namelyM ;. The gInPSO which was first proposed
by Ai and Kachitvichyanukul (2009) [43], the compoi for
social learning behavior includes not only the gldiiest but

also the local best and near neighbor best. Tha loest
particle is the best one among several adjacetitlpar In
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bginPSO-frs, the update the inertia weight, vejo@nd
position can be seen in Eq. (12) as below:

-T
w(r)=w(T) +i_*T[W(1) -w(T)]
Vg (T +1) = W(T) iy (1) + C,u [ P (7) = P ()] + €1 piSN(2) = (D]

+r[Pa(7) = Ry(D] + 6.1 PI(D) - Py( D]
Pa(T+1) = pg (1) +v, (7 +1)

(13)

The near neighbor best is a social learning behavio
concept proposed by Veeramachaneni et al. (2008) [4
and it is determined by a fithess-distance-ratiDR} as
follows:

FDR=[Fitnesy(R) - Fitnes(P)1/| py = Pu| (14)

4.4, Overall procedure of the bglnPSO-frs

In summary, due to the uncertainties and the latlev
structure, we propose a bi-level global-local-nbigh
particle swarm optimization based on fuzzy random
simulation procedure (bginPSO-frs) to solve this REP
model with fuzzy random variables. The details loi6 t
algorithm are specified as follows:

Sep 1. Initialize the swarm]| .

Sep 2. Constraints check based on the fuzzy random
simulation. If in the feasible region, go to Step 3
otherwise, go back to Step 1.

Step 3. For particlé =1,2,... | , generate the response
from the follower.
Sep 3.1 For particle 1 =1,2,...,] , calculate the

Initialize

_________________________________________________________

Setn=0,m=0,M =0
| Generate d“.|¢—{ n=n+l ‘

Constraints
check

Fuzzy random
Simulation

operator

optimal route assignmenb’u for the follower, namely
min, 2.2 %
EhE
Sep 3.2 For particlel =1,2,... 1, return the optimal

route of each particle to the leader.
Sep 4. Update the particles positions and velocities.

Sep 4.1 Fori=1,2,..., , decode each particle to an
instalment group. Calculate the fitness value andttee

position of thel —th particle as its personal best. Choose
the best one as the global best position. The fithes
function is as follows:

MiN,.22 6% * 2. 26% * 2 2.GY

Sep 4.2 Update pbest, gbest, Ibest. Generate nbest
according to Eq. (14).

Sep 4.3 Update the velocity and the position of each
i —th particle according to Eq. (13).

Sep 4.4 Check whether the particles beyond the mark.

Sep 5. Based on instalment group, group the ranking
vector and number that in one group, the smallast ie
numbered 1, the second smallest is numbered 2@nd.s
Replace the ranking vector by using these new ntsnbe

Sep 6. If the stopping criterion is met, stop; otherwise,
T =71 +1 and return to Step 3.

The bgInPSO-frs has proved to be effective in angid
the particles being trapped into a local optimunhals also
proved to be very effective for solving the VRPMDthis
paper. In Fig. 3, it shows the complete procedoretlie
bglnPSO-frs algorithm.

Fitness(P) < Fitness(P"")

T~ m=r] | |[n=r]
Calculate minZZcr_y | = | Sroug arid mark i ‘
=
v
K K a 5
Caleul Bt Xt [P
alculate IlTlIl;;L14“ g;cht‘ Z;L Y \r—lr >T

Fig. 3 Overall procedure of the bglnPSO-frs algorithm

5. Case Study

5.1. Project presentation
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which

To prove the efficiency and practicality of the
advanced model and methods, the Yalong River Basin
is considered as one of the most favorable
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development bases in China’'s twelve hydropower dhase consist of about 8.1472 million cubic meters oftleaock

taken as an application example. The Yalong Riseini cut and cover, 3.3683 million cubic meters of rdukes

the west of Sichuan Province, China. dug, about 1.4 million cubic meters of earth andnst
The first project on the Yalong River Basin is tan filing, a concrete capacity of about 5.98 milli@ubic

Hydropower Station which is on the lower reacheshef meters, and about 19,000 tons of metal structures

Yalong River, about 40km from Panzhihua City. The installation. There are 4 borrow areas which aeerttain

Ertan Hydropower Station is a super project nexy am source of the rockfill. The location and detailed

size to the Three Gorges Hydropower Station in &hin information is in Fig. 4.
The main works and diversion works of Ertan project

Borrow Area 1

Borrow Area 2
(Santan Borrow Area)

Borrow Area 3 Borrow Area 4
(Haocaowan Borrow Area) (Qinziping Borrow Area)

Fig. 4 The location and detailed information of Ertan Fymbwer Station

(Dagangou Borrow Area)

Many kinds of materials are needed and must be the Ertan Hydropower Station and other construgtiajects

transported to certain places in the cascade hydep in the cascade hydropower station projects of tladong
station projects of the Yalong River Basin. To Hert River Basin. The customer node data are shown én th
complicate the problem, the Yalong River is initiland area following, most of which were obtained using susieyhe

of western China, where both the climate and th#ficdrare distance from the depot and each customer’s lodufimgyare
poor. Hence material transportation is one of thestm shown in Table 1. The fuzzy random demand for each
important elements in these projects. In this apfitin customer is shown in Table 2. The distance betaegrtwo
project, there are 18 customer nodes, most of wietdng to customers is shown in Table 3.

Table 1 The distance from the depot and the uploadign tifreach node

Uploading Distance Uploading Distance
Node Time(h) (km) Node time (h) (km)

1 1 65.8752 10 0.8 36.9709
2 1 43.2000 11 0.5 67.9896
3 1.5 25.7406 12 1.5 56.6464
4 0.5 65.9438 13 0.5 59.6096
5 0.7 42.7286 14 0.7 49.5464
6 1.2 45.3194 15 0.75 61.9395
7 1 32.4168 16 1.25 40.1323
8 0.75 38.1215 17 1.75 54.6631
9 1.25 42.0777 18 0.75 52.7555
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Table 2 The fuzzy random demand of each customer

Node Demand Parameter Node Demand Parameter

1 (180,29 p~N(182) 10 (1250017  po~N(12517

2 (170,20  p,~N(17,29 1 (110,15 Pu~N(1115

3 (230,29  py~N(23,27 12 (200,28  p,~N(20,29

4 (L0,p,.19 ~N(10,19 13 (080,13  p,~N(08,1)

5 (L0,0,,29  p;~N(10,29 14 (L0,0,.19 P, ~N(10,15

6 (150,29  p,~N(1529 15 (13,05.17 P~ N(13,17

7 (19.0,.23  p,~N(19,2) 16 (120620  ps~N(12,29

8 (150,20  p~N(1529 17 (280,39  p,~N(2839

9 (230,29 p~N(2328 18 (160517  ps~N(1617

Table 3 The distance between any two customers
Note 1 2 3 4 5 6 7 8 9
1 0 35.427 40.44 31.972 34.797 32.404 46.639 28.383 28.094
2 35.427 0 27.209 56.257 41.602 41.643 44.639 25.827 33.245
3 40.44 27.209 0 42.957 20.995 22.769 18.278 12.381 17.204
4 31.972 56.257 42.957 0 23.217 20.679 35.145 33.418 26.196
5 34.797 41.602 20.995 23.217 0 2.953 13.242 15.778 8.9196
6 32.404 41.643 22.769 20.679 2.953 0 16.191 15.942 8.4119
7 46.639 44.639 18.278 35.145 13.242 16.191 0 21.541 18.604
8 28.383 25.827 12.381 33.418 15.778 15.942 21.541 0 7.7279
9 28.094 33.245 17.204 26.196 8.9196 8.4119 18.604 7.7279 0
10 36.744 38.122 154 29.002 5.8873 8.3487 9.9005 12.947 8.7144
11 21.8 50.743 43.108 11.18 26.852 23.908 40.015 31.667 26.005
12 21.645 42.432 31.845 13.846 16.305 13.379 29.531 20.787 14.682
13 7.2028 33.029 33.961 27.688 27.676 25.36 39.437 21.69 20.906
14 16.369 25.307 24.075 31.264 22.69 21.227 32.337 12.202 14.174
15 37.205 57.378 40.643 7.4108 19.795 17.89 30.099 32.82 25.139
16 49.159 52.286 26.788 31.387 14.416 16.776 8.8527 27.64 22.572
17 40.071 54.821 35.007 14.912 14.16 13.285 22.418 29.22 21.597
18 50.585 61.173 37.802 25.121 19.725 20.441 21.101 35.424 28.56
Note 10 11 12 13 14 15 16 17 18

1 36.744 21.8 21.645 7.2028 16.369 37.205 49.159 40.071 50.585
2 38.122 50.743 42.432 33.029 25.307 57.378 52.286 54.821 61.173
3 15.4 43.108 31.845 33.961 24.075 40.643 26.788 35.007 37.802
4 29.002 11.18 13.846 27.688 31.264 7.4108 31.387 14.912 25.121
5 5.8873 26.852 16.305 27.676 22.69 19.795 14.416 14.16 19.725
6 8.3487 23.908 13.379 25.36 21.227 17.89 16.776 13.285 20.441
7 9.9005 40.015 29.531 39.437 32.337 30.099 8.8527 22.418 21.101
8 12.947 31.667 20.787 21.69 12.202 32.82 27.64 29.22 35.424
9 8.7144 26.005 14.682 20.906 14.174 25.139 22.572 21.597 28.56
10 0 31.782 20.718 29.543 22.653 25.66 14.705 19.616 23.303
11 31.782 0 11.345 19.016 25.543 17.998 38.46 23.903 34.814
12 20.718 11.345 0 15.649 17.445 16.56 29.443 18.425 29.033
13 29.543 19.016 15.649 0 10.259 31.966 42.07 33.878 44.097
14 22.653 25.543 17.445 10.259 0 33.408 36.732 32.779 41.562
15 25.66 17.998 16.56 31.966 33.408 0 25.134 8.2006 17.769
16 14.705 38.46 29.443 42.07 36.732 25.134 0 16.943 12.644
17 19.616 23.903 18.425 33.878 32.779 8.2006 16.943 0 10.99
18 23.303 34.814 29.033 44.097 41.562 17.769 12.644 10.99 0

Yanfang Ma, Jiuping Xu



The decision makers decide that four trucks, whose

deadweight is 10 tons and driving speed is 40 kmvil,

be used in this project. Generally, in China, théof
charge is from 200 to 300 RMB/8h for one persot, oi
consumption for each truck is about 300 to 500 RMB/
and driver costs are about 200 RMB/h. Differentcheu
have different labor levels, for example, truck aynhave
two workers for the loading or unloading, while dku2
may have six. Thus, the cost of a different truekving

the same customer is different.

5.2. Result analysis

Now, consider ModeM |, with the above data and use

the bginPSO-frs algorithm to deal with it. The paeters

in the environment for the problem are set as vValto
Population size: popsize 20; Maximum generation:
maxGen = 200; Inertia weightu(1) = 0.9, &(7) =0.1 and

a(7) is linearly decreasing from 0.9 to 0.4; Acceleati
constant: C, =C, =G =C, = 2. In this paper,
MATLAB 7.0 on a Pentium 4, 1.83GHz clock pulse with
1024 MB memory was used, and the performance of the
method was test with the data in section 5.1.

After running the program 10 times, Table 4, thstbe
satisfactory solution was found. Fig. 5 (1/2) shothe
detailed distribution of the objective value ob&airby the
bgInPSO-frs in different generations. It shows that total
cost of the upper level gets gradually smaller frone
generation to another, which is consistent with the
evolutionary idea of the bginPSO-frs. The objectiatue
is 20773.9 RMB and the relevant solution is as fedo

vehicle 2 17- 18- 155 14- 1
vehicle3 3.6-12- 10 F
vehicle 4 8.2.14. 1. 1¢

The objective of the leader is to minimize totabiso
However, the leader is only able to control two tpar
Using the model and the method proposed in thiepap
can solve this problem. Since the proposed bi-levediel
is interactive, the leader can influence the folow
decision behavior through their own decision making
process. The leader chooses customer nodes 7, 8723
the seed customers for each vehicle respectivehjchwv
makes the sum of the cost of initializing the newtes,
including the loading costs and the transport ¢dstse
9532.3 RMB. The customer sets are also decided &y th
leader to be as follows: node 7, 9, 16 served hycle 1,
node 11, 14, 15, 17, 18 served by vehicle 2, nqdg 8,
10, 12 served by vehicle 3 and node 1, 2, 8, 13elded
by vehicle 4. This customer cluster assignmentdsrithe
service cost to be vehicle 1 1890 RMB, vehicle 2@®04
RMB, vehicle 3 2508 RMB, and vehicle 4 2370 RMB.
Thus, the total service cost, most of which isuh&ading
cost, is 8808 RMB.

The follower's goal is to minimize total routing sto
Therefore, the leader's decision has a large inftee
When the leader decides the seed customer andneeisto
sets for each vehicle, the follower is only ablentake
their decision within the seed customer and custasats.
From the leaders’ decisions in the above sectibe, t
follower chooses the optimal route to minimize tota
routing costs. The routing cost is 353.53 RMB, 582.6
RMB, 705.99 RMB, and 840.43 RMB for each vehicle,
respectively. Thus, the best total routing cosp482.63
RMB.

vehicle 1 7-16- 9
x 10*
2.3
s
2251 B
e
Fc
He
b
& s
g 2.2+ - .
2 b
= prm—"s
>
12}
e
§ 215 I -
T bbb
2.1+
205 | | | | | | | | |
20 40 60 80 100 120 140 160 180 200
Iteration
1/2
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Fitness value function

Fig. 5 The iterative process of application by the bgl@F& and the classic PSO
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Table 4 Computer generated results of the bgInPSO-frs

Leader's decisions Follower's decisions Best results
No. Vehicle Seed
Customer set Route selection Leader Follower
customer
1 16 (411121618) 16 18- 12— 11. 4
2 14 (78914) 14.8-9.7
1 21007.6 2564.9
3 10 (56101517) 10- 17— 155 65 5
4 3 (12313) 3-13- 15 2
1 7 (79 16) 7.16- 9
2 17 (4111517 18) 17 - 18- 15- 14- 11
2 20773.9 2432.6
3 3 (3561012) 3-.6-12-10- 5
4 8 (12813 14) 8-.2-14-1- 13
1 7 (7916) 7-16-9
2 17 (4111517 18) 17 - 18- 15 14~ 11
3 20773.9 2432.6
3 3 (3561012) 3-6-12-10- 5
4 8 (12813 14) 8-.2-14-1- 13
1 16 (411121618) 16 18- 12— 11. 4
2 14 (78914) 14-.8-9-7
4 21007.6 2564.9
3 10 (56101517) 10- 17— 155 6> 5
4 3 (12313) 3-13- 15 2
! 3 (123) 3.2.1
2 9 (7891014) 9-.8-10- 7- 14
5 21182.8 2729.5
3 16 (11121316 17) 16 - 17 12— 11» 13
4 18 (45615 18) 18- 15~ 4- 5. 6
1 7 (7916) 7-16-9
2 17 (4111517 18) 17 - 18- 15 14~ 11
6 20773.9 2432.6
3 3 (3561012) 3-6-12-10- 5
4 8 (12813 14) 8-2-14-1- 13
1 16 (411121618) 16 - 18- 12— 11. 4
2 14 (78914) 14.8-9.7
7 21007.6 2564.9
3 10 (56101517) 10- 17— 155 65 5
4 3 (12313) 3513515 2
1 7 (79 16) 7.16- 9
2 17 (4111517 18) 17 - 18- 15 14 11
8 20773.9 2432.6
3 3 (3561012) 3-.6-12-10- 5
4 8 (12813 14) 8-2-14-1- 13
! 2 (238914) 2.14.8-3-9
2 6 (161113) 6-11-1- 13
9 21550.5 3010.8
3 5 (451012 16 18) 5.4.16- 18- 12 10
4 7 (71517) 7-17-15
1 7 (7916) 7-16-9
2 17 (4111517 18) 17 - 18- 15 14~ 11
10 20773.9 2432.6
3 3 (3561012) 3-6-12-10- 5
4 8 (12813 14) 8-2-14- 1. 13
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5.3. Comparison analysis

To show better the effectiveness of the proposed
algorithm, here a brief comparison is made betwien
bgInPSO-frs and the classic PSO. The parametetheof
basic version of the classic PSO algorithm: Pojprat
size: popsize = 50; Maximum generation: maxGen &; 20
Inertia weight: (1) =0.9, (1) =0.1, and «(7) is linearly
decreasing from 0.9 to 0.4; Acceleration constant:

C, =C, =2. For this algorithm MATLAB 7.0 on a

Pentium 4, 1.83GHz clock pulse with 1024 MB memigry
also used, and the performance of the method iedes
using the actual data in section 5.1.

To explore the reasons why the bgInPSO-frs is
superior, the dynamic of the swarm is studied lmpreing
the dispersion and velocity indices in every iteratstep.
Fig. 5 (1/2) shows the detailed distribution of titgective
value obtained by the bglnPSO-frs in different gatiens.
Fig. 5 (2/2) shows both the convergence of the rest
history of the bgIinPSO-frs and the classic PSOnFFag.

5 (2/2), both profiles show the general tendencythef
particle movements in the swarm: all particles move
towards the global best position, so all partickes laid
close to each other and the results become bettiebetter

at the end of each iteration.

It is also observed that the dynamic of the swaanes
different between the swarm in the basic versiornthef
classic PSO and those in the bginPSO-frs. In th&cba
version, the dispersion indices plotted in Fig.28] (the
red profile) shows that the swarm is shrinking ${oaver
the iterations which means that the coverage ok#ach
area by the swarm is decreasing slowly over thatiten.

Hence, the swarm could sufficiently explore various
regions of the problem space, but at the end oit¢hation
process the dispersion index is still not stabléherswarm
size is not yet small enough. Further, it is nosglole to
confirm if the best satisfactory objective valuesHaeen
achieved as the iterative process is unstable. iftpsies
that there is sufficient time (or iteration step&r
exploration but not enough time for exploitation.

The blue profile shows the convergence of the best
history of the bgInPSO-frs. From Fig. 5 (2/2) (thkie
profile) it can seen that the results are poorhe first
period because the results may be infeasible and ha
punishing function. As the program continues rugnitme
swarm is shrinking more rapidly and the resultsopee
stable after about the 100th generation. In trst finlf of
the iteration, while the swarm size is big enougte
swarm focuses on exploring various regions in the
problem space. Then, during the second half of the
iteration, as the swarm is clustered in a very baral, the
swarm is more concentrated and is able to locage th
optimum more precisely which implies that there is
enough time for both exploration and exploitatibtence,
it can be concluded that there is a good balantecea
exploration and exploitation which may be a conttiig
factor for the bgInPSO-frs to yield better solutitiman
those obtained using the classic PSO version.

The bgInPSO-frs program and the classic PSO were
both run 10 times and a comparison is made. Table 5
shows the differences between the bgInPSO-frs &ed t
classic PSO. From Table 5 the predominance of our
algorithm can be clearly seen compared with thesita
PSO.

Table 5 The comparison between the bginPSO-frs and tlssicd?SO

Item The bgInPSO-frs Classic PSO
Best result 20773.9 21333.2
Worst result 21550.5 22229.5
Average total cost 20962.56 21827.85
Difference between the best and the worst 776.6 896.3
Difference between the average and the best 188.66 494.65

5.4. Model analysis

From the data features, the customer demand is
described as a fuzzy random variable. Since thmitieh
of a fuzzy random variable is the refining and exgsan of
the fuzzy variables, the results between the fuandom
model and the fuzzy model are compared. Fuzzy alsda
derived which ignore the randomness phenomenon and
only consider the fuzzy environment. This fuzzyadé
put into the bginPSO-frs, and the program run hies,
the results of which are shown in Table 6. From the
results, it can be seen that considering fuzzy gend

International Journal of Civil Engineering, Vol. 12, No. 2, Transaction A: Civil Engineering, June 2014

factors may bring more economic benefits, and thst ¢
saving can reach 1392.4 RMB or 6.6 %. Considering
randomness and fuzziness at the same time maytthelp
decision makers learn more about the problems. More
detail about the problems could result in more sasful
decisions. As the fuzzy data are somewhat divofosut

the facts, fuzzy random variables have been showpet
effective and efficient. From the results hereisiclearly
seen that data translated into fuzzy random numizers
closer to reality, and has a much better performanc
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Table 6 The comparison between VRPMD in fuzzy random emagnt and fuzzy enviroment

Type Best result Worst result Average total cost
Fuzzy random environment 20773.9 21550.5 20962.56
Certain environment 22161.7 22508.2 22354.975

6. Conclusion

In this paper, a vehicle routing problem with nplki
decision-makers under a random environment and its
application to the construction material transp@sta in
the Yalong River Hydropower Base in the southwest
region of China has been discussed. For this pmgbte
new mathematical model was proposed, the bi-level
decision making model, in which every kind of cast
fully considered. To solve this problem, the bglQPfgs
algorithm was presented. Then, the proposed moadl a
method were applied to the Yalong River Hydropower
Base. The results indicated that the proposed mandel
method is viable and efficient in handling such ptar
problems. At the end, a brief comparison is madeéen
the bgIinPSO-frs and the classic PSO to furthestilaie
the merits of the algorithm.
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