
International Journal of Civil Engineering, Transaction A: Civil Engineering, Vol. 11 No. 3, September 2013

1. Introduction

One of the most popular problems in the scheduling phase of
any project is Resource-Constrained Project Scheduling
Problem (RCPSP) that has a wide range of applications in
industry, business, and government etc. 

Resource-Constrained Project Scheduling has been an
interesting research topic for many decades, resulting in a
wide variety of optimization procedures. The focus on project
lead-time minimization has led to the development of various
exact and (meta-) heuristic procedures for scheduling projects
with tight resource constraints under a wide variety of
assumptions. The basic problem type in project scheduling is
the well-known Resource-Constrained Project Scheduling
Problem (RCPSP). This problem type aims at minimizing the
total duration or makespan of a project subject to precedence

relations between activities and limited renewable resource
availabilities, and is known to be NP-hard [1].

In literature, some exact algorithms have been used to solve
RCPSP. Some of these exact methods are those of
Demeulemeester and Herroelen [2]and Sprecher [3].
However, since computation times of exact methods are too
large, researchers have used heuristic procedures to obtain
reasonable project schedules within short computation times.
The following studies presented these procedures: [4, 5]. 

Some metaheuristic algorithms are also proposed for RCPSP.
Genetic Algorithms (GAs), Simulated Annealing (SA), Tabu
Search (TS), and Particle Swarm Optimization (PSO) are some
of these algorithms. Methods based on genetic algorithms are
presented in [6, 7-13]. Simulated annealing is incorporated in
[6, 14-18], Tabu Search in [6, 19-24], and Particle Swarm
Optimization in [25, 26]. Other studies haveincorporated the
Frog Leaping Algorithm (FLA) [27], Evolutionary
Programming (EP) [28], and Hybrid Algorithms and so on to
solve the RCPSP. In all of these studies, activity durations and
resource requirements are assumed deterministic.

This research deals with the RCPSP in which activity
durations can vary within their certain ranges (i.e., RCPSP
with variable activity durations). Long and Ohsato [29]
introduced a hybrid genetic algorithm to solve this problem.
However, they only made use of the Standard GA in their

International Journal of Civil Engineering

Genetic algorithms to solve resource-constrained project

scheduling problems with variable activity durations

M. H. Sebt1,*, M. H. Fazel Zarandi2, Y. Alipouri 2

Received: October 2012, Accepted: January 2013   

Abstract

Resource-Constrained Project Scheduling Problem (RCPSP) is one of the most popular problems in the scheduling phase of any
project. This paper tackles the RCPSP in which activity durations can vary within their certain ranges such asRCPSP with
variable activity durations. In this paper, we have attempted to find the most suitable hybridization of GA variants to solve the
mentioned problem.For this reason, three GA variants (Standard GA, Stud GA and Jumping Gene) were utilized for first GA, and
two GA variants (Standard GA, Stud GA) for the second one, and their hybridizations were compared. For this purpose, several
comparisons of the following hybridizations of GAs are performed: Standard-Standard GA, Standard-Stud GA, Stud-Standard GA,
Stud-Stud GA, Jumping Gene-Standard GA, and Jumping Gene-Stud GA. Simulation results show that implementing Stud-Stud
GA hybridization to solve thisproblem will cause convergence on the minimum project makespan, faster and more accurate than
other hybrids. The robustness of the Stud GA in solvingthe well-known benchmarking RCPSP problems with deterministic activity
durations is also analyzed. 

Keywords: Project scheduling, RCPSP with variable activity durations, Standard GA, Stud GA, Jumping gene.

* Corresponding Author: sebt@aut.ac.ir 
1 Associate Professor of Construction Engineering and Management,
Department of Civil Engineering, Amirkabir University of Technology,
Tehran, Iran
2 Professor of Industrial Engineering, Department of Industrial
Engineering, Amirkabir University of Technology, 15875 Tehran, Iran
3 Ph.D Candidate of Construction Engineering and Management,
Department of Civil Engineering, Amirkabir University of Technology,
Tehran, Iran



proposed procedure. It will be shown that if other variants of
GA are used, the resulting hybridizations will find a better
solution (minimum makespan) for the problem and converge
to this solution faster with higher accuracy.

Two genetic algorithms are used in the proposed
hybridization procedure of Long and Ohsato [29]. The first
GA works on the durations of activities, and each chromosome
of this first GA is a set of activity durations. The second GA
receives a set of activity durations from the first GA to find
minimum project makespan for this set, as fitness value. As the
main objective of this paper is to find suitable GA variants for
the first and second GAs, three variants of GA, namely
Standard GA, Stud GA and Jumping Gene are used and the
following hybridizations of GAs are compared: Standard-
Standard GA, Standard-Stud GA, Stud-Standard GA, Stud-
Stud GA, Jumping Gene-Standard GA, and Jumping Gene-
Stud GA. The first GA (e.g. Standard GA in Standard-Stud
GA) is implemented as a binary genetic algorithm which
represents variables as an encoded binary string, and works
with the binary strings to minimize the cost.However, genes of
each chromosome in the second GA are taken to be integer
numbers that show activity numbers.

The remainder of the paper is organized as follows: In the
next Section, a background is presented to describe variants of
GA. Section 3 describes the general formulation of the RCPSP
problem with variable activity durations. Section 4 presents
the procedure of using genetic algorithms to solve the
problem. In Section 5, results of computational experiments on
some example networks are reported, and the comparison
between hybridizations of GAs are made. Moreover, Section 5
is devoted to analyzingthe robustness of the best variant of GA
to solve the RCPSP with deterministic activity durations by
applying it on some well-known benchmark problems. Finally,
conclusions and future works are presented in Section 6.

2. Background

The standard genetic algorithm has been introduced by
Holland (1975) and attemptsto implement the idea of survival
of the fittest in the field of combinatorial optimization [30]. A
genetic algorithm starts with a population of n chromosomes.
Then, chromosomes are ranked from the lowest cost to the
highest by evaluating the cost function. Only the best ones are
selected to continue, while the rest are deleted. Two
chromosomes are selected from the pool of chromosomes to
mate. Mating is the creation of one or more offsprings from the
parents selected in the pairing process. Crossover and mutation
operators perform this mating. Pairing takes place in the
mating population until offsprings are born to replace the
discarded chromosomes. This process continues until a
number of populations have been created and evaluated, or
stopping criteria have been reached.

Khatib and Fleming [31] introduced the Stud GA variant of
GA. The difference between this variant of GA and Standard
GA is in the selection of father and mother chromosomes. The
basic idea behind the Stud GA is to use the best individual in
the population (father) to mate with all others (mothers) to
produce the new offsprings. No stochastic selection is used
here [31]. 

The procedure of Stud GA is as follows [31]:
1. Initialize a random population;
2. Choose the fittest individual for mating (the Stud);
3. Perform crossover between the Stud and the remaining

elements, and
4. Repeat until stopping criteria is met.
The Nobel Laureate, McClintock, based on her work on corn

plants [32], reported the very first discovery of Jumping Gene
(JG). To emulate the analogy for JG computation, a
transposition of gene(s) into the same chromosome or even to
other chromosomes is devised for computation. As a result,
this operation can further enhance genetic operations such
ascrossover, mutation, and selection for improving the fitness
quality of chromosomes from one generation to the other[33].

Computational JG operations have recently been proposed
for the enhancement of searching ability in evolutionary
algorithms, in particular, for multi-objective optimization
problems. The following issues are consideredin the design
and implementation of the JG [33]:

(a) Each chromosome has some consecutive genes thatare
randomly selected as the transposon. There may be more than
one transposon with different lengths (e.g. one or two bits for
binary code).

(b) The jumped locations of the transposons are randomly
assigned, and operations can be carried out on the same
chromosome, or to another chromosome in the population pool.

(c) Two JG operations, namely cut-and-paste and copy-and-
paste, are devised. As seen in Figure 1, these two operations
are to be inserted after the parent selection process.

(d) The JG operations are not limited to binary encoded
chromosomes, but can also be extended for other coding
methods, such as integer or real number.

The Stud GA and Jumping Gene have proven their ability to
solve optimization problems, and both of them were better than
Standard GA in most cases. This fact inspired us to apply these
variants of GA on solving the RCPSP with variable activity
durations and to find their suitable hybridization for this problem.

This background will be helpful in understanding the
procedure used in this paper to solve the RCPSP with variable
activity durations.

190 M. H. Sebt, M. H. Fazel Zarandi, Y. Alipouri

Fig. 1 Genetic cycle of JGEA [33]
 



3. Resource-constrained project scheduling problem
with variable activity durations

In the classical RCPS problem, duration and resource
requirements of each activity are considered to be known and
deterministic, while in most real world projects, duration of
the activities depends on time/resource trade-off (e.g. the total
work content of 120 man-days may be performed in 12 days
by 10 men, or in 6 days by 20 men) and cannot be determined
precisely. Therefore, it seems necessary to determine a suitable
duration for each activity of a project as the project duration is
minimized. For that reason, this paper deals with the RCPSP
with variable activity times.In other words, the problem is to
find the deterministic schedule thathas suitable duration and
optimal start times of activities, so that the project duration
under precedence and resource constraints minimized. Using
the classification scheme in Demeulemeester et al. [30], the
RCPSP with variable activity durations can be denoted as
problem m,1T/cpm,cont,mu/Cmax [29].

The mathematical description of the problem is given as
follows [29]:

Min T (1)
Subject to

T=max (ft(j)=max (st(j)+t(j)),  j=1,. . .,N (2)
mint(j) ≤ t(j) ≤ maxt(j),    j=1,…,N (3)
st(i) + t(i) ≤ st(j) j=1,…,N  and  ∀i Є P(j) (4)
∑i∈Strik ≤ ak  for k =1,. . . ,R and t=1,. . .,ft(N) (5)
Est(j) ≤ st(j) ≤ Lst(j),      j=1,. . .,N (6)

Variables st(j), t(j), ft(j), j=1,…,N are non-negative integer
numbers. 

In this formulation, the variables ft(j) and st(j) denote the
finish and start times of the different activities, respectively,
while t(j) denotes the duration of each activity. The set St that is
used in equation (5) denotes the set of activities that are in
progress at time t. Moreover, ak denotes the availability of the
kth resource type and rik represents the resource requirement of
activities in St for resource type k. The interval [mint(j),maxt(j)]
is the certain range of duration of activity j, and N is the total
number of activities. P(j) is a set of immediate predecessors of
activity j and R denotes the number of resources. Est(j) and
Lst(j) denote the earliest and latest start of activity j by the
standard CPM, respectively.

Objective function (1) minimizes the project duration (T).
Equation (2) is used to determine the project duration.
Constraints (3) represent that activities have variable durations.
Constraints (4) are to implement the precedence constraints,
while constraints (5) are to implement resource constraints, and
finally Constraints (6) force the start time of activity jto be
between the earliest and latest start time of this activity.

4. Solution methodology by using genetic algorithm
variants

This section introduces the methodology used in this paper to
solve RCPSP with variable activity durations, which is the
special case of the Discrete Time/Resource Trade-off Problem
(DTRTP).

Literature on the time/resource trade-off problem is relatively
sparse [30], and all of these existing methods solve RCPSP
with the Discrete Time/Resource Trade-off Problem (DTRTP)
[29]. Long and Ohsato [29] developed a procedure to solve
continuous time/resource trade-off, especially to solve the
RCPSP with variable activity durations. This procedure has
been used to hybridize variants of GA to solve RCPSP with
variable activity durations as follows:

The procedure implements a GA on the activity durations and
evaluates the fitness of a given set of durations (which
amounts to the classical RCPSP problem with single execution
activity mode-denoted as m,1/cpm/Cmax [30]) by means of
well-known scheduling heuristics [29]. GA is also used as the
scheduling heuristic; thus, two genetic algorithms are used in
the procedure. The GA thatworks on the activity durations is
called first GA, and the GA thatis used as scheduling heuristic
is called second GA. The goal is to find the most suitable
variants of GA for these first and second GAs; therefore, three
GA variants (Standard GA, Stud GA, and Jumping Gene) are
utilized for the first GA, and two GA variants (Standard GA
and Stud GA) for the second one and their hybridizations are
compared. These hybridizations are the following six tries: 

• Standard GA with Standard GA
• Standard GA with Stud GA
• Stud GA with Standard GA
• Stud GA with Stud GA
• Jumping Gene with Standard GA
• Jumping Gene with Stud GA
The comparative results of these hybridizations on some

example projects exist in the Section 5. 

4.1. Functions of the first ga on activity durations

Binary GA is used to implement GA on the activity durations.
In binary GA, each gene of the chromosome is a binary string
and shows the duration of one activity.Therefore, the genes in
each chromosome of this first GA represent durations t(j) of N
activities.The encoding and decoding formulas in [34] are used
for binary encoding and decoding of mathematical formulas.

In the iterative process of the first GA, new chromosomes 
are produced by crossover and mutation operators (For JG,
also, cut-and-paste and copy-and-paste operators are used).
Genes of chromosomes are decoded to determine durations t(j)
in the range [mint(j),maxt(j)] and these t(j), j=1,…,N are
utilized by second GA to calculate fitness function. In fact, the
fitness value of a given set of durations is considered as the
project duration and is calculated by the second GA. This
process continues until a number of populations have 
been created and evaluated, or stopping criteria have been
reached. Figure 2 shows the aforementioned procedure for the
first GA. 

4.2. Implementing the second GA in the procedure

The second GA is utilized to find the optimal value of project
duration for each set of activity durations. This second GA
receives a set of activity durations from first GA and finds the
minimum project makespan as fitness valueof this set.

In this research, the evaluation process of fitness function (as

International Journal of Civil Engineering, Transaction A: Civil Engineering, Vol. 11 No. 3, September 2013 191



project duration T) is implemented by an effective application
of well-known heuristic priority rules in the serial scheme.
Here, the parallel scheme was not used, because in [35, 36]
researchers show that the parallel method does not generally
perform better than the serial method.

The serial scheduling scheme sequentially adds activities 
to the schedule until a feasible complete schedule is obtained.
In each iteration, the next activity in the priority list is 
chosen and for that activity, the first possible starting time is
assigned such that no precedence or resource constraint is
violated [30]. 

In this paper, priority list representation is used as the
representation scheme for second GA’s chromosomes, and the
one-point crossover operator is taken to be the binary
neighborhood operator implemented together with the
adjacent pairwise interchange mutation operator to obtain the
near optimal solution in the second GA. Figure 3 shows the
aforementioned procedure for the second GA.

5. Simulation comparisons and results 

This section presents the computational analysis for
investigating performance of the six proposed hybridizations
of GA variants to solve the RCPSP with variable activity
durations. The efficacy and robustness of the most suitable
variant of GA to solve the well-known benchmarking RCPSP
problems with deterministic activity durations is also
analyzed. The algorithms were programmed using the
MATLABprogramming language, and tests were carried out
on a laptop with Windows 7 Operation System, Intel Core 2
Duo CPU at 2.00 GHzclock speed. The following
computational experiments were implemented: (1)
Performance comparison of six hybridizations of GA variants
to find the most suitable hybridization of the GA variants for
solvingthe RCPSP with variable activity durations, and (2)
Performance comparison of the most suitable variant of GA
from part 1 with other metaheuristics to solve the RCPSP with
deterministic activity durations.

5.1. Comparison of six hybridizations of GA variants

In order to investigate the performance of the six tries of GA
variants mentioned in Section 4, two experimental analyses are
presented including their comparison using the same problem
example as [29] (part A),and their comparison using twenty
instanceproblems from J30 standardinstances set in PSPLIB
(part B).

A. Using the same problem example as [29] for comparison
The activity network of the example usedby Long and

Ohsato [29] is shown in Figure 4. 
Figure 4. Activity network of the example project [29]
As observed in Figure 4, this example is a project with 20

activities. The data foreach activity and the relationship
between activities are shown in Table 1. In the last column of
Table 1, Rjk denotes the total required resource k to perform
activity j. The total availability of resource (ak) is 45 units per
day. 

The procedure mentioned in the previous section was used
with the following input data for the first GA of all the
hybridizations: as reference [29], the number of chromosomes
(or particles) in each population was taken to be 100;
However, the mutation factor (the fraction of the bits thatgets
mutated) was chosen to be 0.1 instead of 0.03 in [29] (because
increasing the number of mutation increases the algorithm’s
freedom to search outside the current region of variable space
and tends to distract the algorithm from converging on a

192 M. H. Sebt, M. H. Fazel Zarandi, Y. Alipouri

Fig. 2 Flowchart of implementing the first GA

Fig. 3 Flowchart of implementing the second GA
 

Fig. 4 Activity network of the example project [29]
 



popular solution [34, pp.43].Furthermore, our considerations
showed that 0.1 gives better answers for this problem than
other values).The crossover rate was taken to be 0.5 (because,
crossover rate is often kept 0.5 in the natural selection process
[34, pp.38]).Each gene was coded with 16 bits.Finally,
generation number was equaled to 100. These simulation
parameters are presented in Table 2.

For the second GA in the hybridization of two GA variants,
the number of chromosomes (priority lists) in the population
was chosen to be 10, and these chromosomes were produced
by the following 9 priority rules: random rule (randomly
produced two priority lists), earliest start time rule, earliest
finish time rule, latest start time rule, latest finish time rule,
minimum total slack rule, minimum free slack rule, minimum
safety slack rule, and greatest resource demand rule. The upper
bound for project time wasassumed to be 70 days.

Using the aforementioned procedure and input data, six
proposed hybridizations of GA variants as mentioned in
Section 4 were tested on an example network in Figure 4. All
of these six tries were repeated 5 times on the example
network and were run until the pre-specified generation 100
was reached. Since the random development of the algorithms
causes them to have different answers in different runs, the5-
time repetition was carried outfor reducing the effect of chance
and increasing reliability in the results. Results are shown in
Figures 5-10 and Tables 3-8.

Figures 5-10 show the mean of the results of 5 times running

of the algorithms. Each figure shows the minimum value of
cost function (second GA answer) versus the number of
iterations. The curve in each figure gives a measurement of
how fast the corresponding algorithm converges and reaches
the global minimum. Moreover, it is a suitable way to use
these figures for comparing different algorithms in terms of the
final value they reach for a specified number of iterations.

Figure 5 is for Standard-Standard GAs hybridization and its
mean value of fivetimes running in the last iteration is 58.2.
Likewise, Figures 6, 7, 8, 9 and 10 are for Standard-Stud, JG-
Standard, JG-Stud, Stud-Standard, and Stud-Stud GAs
hybridizations, respectively; and, with the same order, their
mean value of 5 times running in the last iteration are 57.8,
58.2, 58.4, 57.2, 57.2. Since among these mean values 57.2 is

International Journal of Civil Engineering, Transaction A: Civil Engineering, Vol. 11 No. 3, September 2013 193

Table 2 Simulation parameters for first GA

Activity 
number 

mint(j) 
(days) 

maxt(j) 
(days) 

predecessors 
Rjk 

(units-days) 
1 4 6  150 
2 4 6 1 140 
3 4 5 1 160 
4 3 5 3 60 
5 2 4 3 30 
6 6 9 3 90 
7 6 10 2 90 
8 5 8 2 40 
9 3 5 4 50 

10 7 10 6,7 120 
11 5 8 6,7 100 
12 3 6 6,7 50 
13 8 10 8 200 
14 4 7 5,10 100 
15 3 8 12,13 60 
16 5 8 12,13 180 
17 3 4 9 60 
18 13 15 11,14,15 240 
19 5 6 16 150 
20 7 8 17,18,19 180 

Table 1 Data for activities in the example pr

Population size 100 
Mutation rate 0.1 
Crossover rate 0.5 

Number of bits in each gene 16 
Number of generation 100 
Number of repetition 5 

Range bound of activity 
durations 

Mentioned in second and 
third column of Table 1 

Fig. 6 Plot of the minimum cost as a function of theiteration for
Standard-Stud GAs hybridization

 

0 20 40 60 80 100 120
57

58

59

60

61

62

number of iteration

C
o
s
t

 

 

GAdisstanstud

Fig. 5 Plot of the minimum cost as a function of the iteration for
Standard-Standard GAs hybridization

0 20 40 60 80 100 120
58

59

60

61

62

number of iteration

C
o
s
t

 

 

GAdisstanstan

Fig. 7 Plot of the minimum cost as a function of the iteration for
JG-Standard GAs hybridization

0 20 40 60 80 100 120
58

58.5

59

59.5

60

60.5

61

number of iteration

C
o
s
t

 

 

GAdisJGstan



the lowest value, the convergence speed of the Stud-Standard
and Stud-Stud GAs hybridizations are more than the other tries.

By placingFigures 5-10 in a single figure as shown in Figure
11, it can be observed schematically that the above claim is
true. As can be seenin Figure 11, in all the iterations, curves
related to hybridizations of Stud-Standard and Stud-Stud GAs
have fewer mean values than others; therefore, these two tries

are faster than others to converge and reach the minimum point
searched as the minimum project duration. 

The suitable duration (t(j)), the daily required resource k (rjk),
and the start and finish times (st(j) and ft(j)) of activity j, as the
test results of six mentioned tries are shown in Tables 3-8.
Table 3 is for Standard-Standard GAs hybridization, and its
minimum makespan is equal to 58 (bold number in the last row

194 M. H. Sebt, M. H. Fazel Zarandi, Y. Alipouri

Fig. 10 Plot of the minimum cost as a function of theiteration for
Stud-Stud GAs hybridization

0 10 20 30 40 50 60 70
57

58

59

60

61

62

number of iteration

C
o
s
t

 

 

GAdisstudstud

Fig. 9 Plot of the minimum cost as a function of the iteration for
Stud-Standard GAs hybridization

0 10 20 30 40 50 60 70
57

58

59

60

61

62

number of iteration

C
o
s
t

 

 

GAdisstudstan

Fig. 8 Plot of the minimum cost as a function of theiteration for JG-
Stud GAs hybridization

0 20 40 60 80 100 120
57

58

59

60

61

62

number of iteration

C
o
s
t

 

 

GAdisJGstud

Fig. 11 Plot of the minimum cost as a function of the iteration for
all the hybridizations

0 20 40 60 80 100 120
57

58

59

60

61

62

number of iteration

C
o
s
t

 

 

GAdisstudstud

GAdisstudstan

GAdisstanstud
GAdisstanstan

GAdisJGstud

GAdisJGstan

Activity 
number 

t(j) 
(days) 

st(j) 
(days) 

ft(j) 
(days) 

rjk 

(units/day) 
1 4 0 4 37.5 
2 5 8 13 28 
3 4 4 8 40 
4 5 13 18 12 
5 2 8 10 15 
6 7 10 17 12.86 
7 9 13 22 10 
8 5 13 18 8 
9 5 18 23 10 
10 7 26 33 17.15 
11 8 29 37 12.5 
12 3 23 26 16.67 
13 8 18 26 25 
14 4 33 37 25 
15 4 29 33 15 
16 7 37 44 25.7 
17 3 26 29 20 
18 13 37 50 18.46 
19 6 44 50 25 
20 7 50 57 25.7 

 

 

Table 4 Results for activities using Standard-Stud GAs

Activity 
number 

t(j) 
(days) 

st(j) 
(days) 

ft(j) 
(days) 

rjk 

(units/day) 
1 4 0 4 37.5 
2 5 8 13 28 
3 4 4 8 40 
4 5 11 16 12 
5 3 8 11 10 
6 7 13 20 12.86 
7 7 13 20 12.86 
8 6 13 18 6.67 
9 4 16 20 12.5 
10 8 20 28 15 
11 8 28 36 12.5 
12 5 20 25 10 
13 8 25 33 25 
14 5 33 38 20 
15 5 33 38 12 
16 7 38 45 25.7 
17 3 20 23 20 
18 13 38 51 18.46 
19 6 45 51 25 
20 7 51 58 25.7 

 

 

Table 3 Results for activities using Standard-Standard GAs



of column 4). Likewise, Tables 4, 5, 6, 7 and 8 are for
Standard-Stud, JG-Standard, JG-Stud, Stud-Standard, and
Stud-Stud GAs hybridizations, respectively; and, with the

same order, their minimum makespans are 57, 57, 57, 56 and
57. These minimum makespans with the standard deviations of
all the six tries are shown in Table 9.

International Journal of Civil Engineering, Transaction A: Civil Engineering, Vol. 11 No. 3, September 2013 195

Activity 
number 

t(j) 
(days) 

st(j) 
(days) 

ft(j) 
(days) 

rjk 

(units/day) 
1 4 0 4 37.5 
2 5 8 13 28 
3 4 4 8 40 
4 4 8 12 15 
5 4 12 16 7.5 
6 7 13 20 12.86 
7 7 13 20 12.86 
8 6 13 19 6.67 
9 4 16 20 12.5 
10 7 20 27 17.15 
11 6 27 33 16.67 
12 4 28 32 12.5 
13 8 20 28 25 
14 4 32 36 25 
15 3 33 36 20 
16 7 36 43 25.7 
17 4 28 32 15 
18 13 36 49 18.46 
19 6 43 49 25 
20 7 49 56 25.7 

 

 

Table 7 Results for activities using Stud-Standard Gas

Activity 
number 

t(j) 
(days) 

st(j) 
(days) 

ft(j) 
(days) 

rjk 

(units/day) 
1 4 0 4 37.5 
2 4 8 12 35 
3 4 4 8 40 
4 5 12 17 12 
5 3 17 20 10 
6 8 12 20 11.25 
7 6 12 18 15 
8 7 12 19 5.71 
9 4 18 22 12.5 
10 7 22 29 17.15 
11 6 28 34 16.67 
12 5 28 33 10 
13 8 20 28 25 
14 4 33 37 25 
15 3 34 37 20 
16 7 37 44 25.7 
17 4 29 33 15 
18 13 37 50 18.46 
19 6 44 50 25 
20 7 50 57 25.7 

 

  

Table 5 Results for activities using JG-Standard GAs

Activity 
number 

t(j) 
(days) 

st(j) 
(days) 

ft(j) 
(days) 

rjk 

(units/day) 
1 4 0 4 37.5 
2 5 8 13 28 
3 4 4 8 40 
4 4 8 12 15 
5 4 12 16 7.5 
6 7 13 20 12.86 
7 6 13 19 15 
8 7 13 20 5.71 
9 5 16 21 10 
10 8 20 28 15 
11 6 20 26 16.67 
12 4 21 25 12.5 
13 8 26 34 25 
14 5 31 36 20 
15 3 34 37 20 
16 7 37 44 25.7 
17 3 28 31 20 
18 13 37 50 18.46 
19 6 44 50 25 
20 7 50 57 25.7 

 

Table 6 Results for activities using JG-Stud GAs

Activity 
number 

t(j) 
(days) 

st(j) 
(days) 

ft(j) 
(days) 

rjk 

(units/day) 
1 4 0 4 37.5 
2 6 8 14 23.3 
3 4 4 8 40 
4 3 10 13 20 
5 2 8 10 15 
6 8 13 21 11.25 
7 7 14 21 12.86 
8 7 14 21 5.7 
9 5 13 18 10 
10 8 22 30 15 
11 7 30 37 14.29 
12 5 22 27 10 
13 10 21 31 20 
14 6 31 37 16.67 
15 5 31 36 12 
16 7 37 44 25.7 
17 4 18 22 15 
18 13 37 50 18.46 
19 6 44 50 25 
20 7 50 57 25.7 

 

Table 8 Results for activities using Stud-Stud Gas

Parameter 
Algorithm type 

Standard-
Standard 

Standard
-Stud 

JG- 
Standard 

JG- 
Stud 

Stud-
Standard 

Stud- 
Stud 

Minimum makespan 
(days) 

58 57 57 57 56 57 

Standard deviation 0.43 0.49 0.49 0.40 0.40 0.00 
 

Table 9 Minimum makespan and standard deviation of all six tries



Using Table 9, the accuracy of the six mentioned tries can be
discussed. As it is observed in this table, the lower standard
deviation in the table is 0.00 and is for the Stud-Stud GAs
hybridization. The lower standard deviation corresponds to
higher accuracy. The lower minimum makespan is for Stud-
Standard GAs hybridization, but because of its lower accuracy
(standard deviation = 0.40), repetition of its minimum
makespan cannot be expected. For Stud-Stud GAs
hybridization, the accuracy is high (standard deviation = 0.00),
and the minimum makespan is reasonable.

Now it can be claimed that the Stud-Stud GAs hybridization
is the most suitable hybridization of GAs variants for solving
the RCPSP with variable activity durations; because, on one
hand, as it was proven using Figures 5-11, the convergence
speed of the Stud-Standard and Stud-Stud GAs hybridizations
are more than the other tries, and on the other hand, as it was
shown in Table 9, Stud-Stud GAs hybridization is more
accurate than Stud-Standard GAs hybridization. Comparing
six proposed hybridizations of GAs onlyby applying them on
the example of Long and Ohsato [29] is not enough to make a
strong decision about the most suitable hybridization of GAs,
therefore, the analysis of part B is required.

B. Using twenty instance problems from PSPLIB for comparison

There are benchmark problems for RCPSP with deterministic
activity times, but there is no benchmark problem set for
RCPSP with variable activity times. Thus, twenty instance
problems are derived from J30 standard instances set in
PSPLIB benchmark problems as the base and problems with
variable activity times is generated as follows:  for each
selected instance from PSPLIB, considering b equal to
deterministic estimate, the most optimistic time (a) is drawn
randomly from interval [b-0.3b, b], and the most pessimistic
time (c) is drawn randomly from interval [b, b+0.4b]. The

floor function is used to come up with an integer for the
optimistic estimate, and ceiling function to come up with an
integer for the pessimistic estimate. The lower value (a) is
bounded by 1, which means that the most optimistic time
required to complete an activity is at least 1 time unit.

Standard instances of PSPLIB are available at
http://129.187.106.231/datasm.html considering a single mode
resource constrained project scheduling problem, and are
generated by the problem generator ProGen using three
parameters: Network complexity (average number of non-
redundant arcs per node including dummy activity), Resource
Factor (average portion of resource of a particular type used
and consumed) and Resource Strength (availability of a
particular type of resource). In this paper, all20 problems have
Network Complexity as 1.5, Resource Factor as 0.25 and
Resource Strength as 0.2 for the first 10 instances, and 0.5 for
the next 10 instances. In all of these 20 selected problems,
there are 30 non-dummy activities and 2 dummy activities. 

Results of applying six proposed hybridizations of GA
variants using the procedure of Section 4 with the input data of
part A to solve the 20 generated problems with variable
activity times are shown in Table 10.

Despite in J30 the optimal makespans for all instances are
known, it would not be useful to compare the solution obtained
for problems with variable activity times to only the optimal
solutions for problems with deterministic activity times.
Therefore, the lower bound for the 20 selected problems is
calculated and the results obtained by the six proposed GA
hybridizations are compared to the lower bounds. The lower
bounds are calculated by solving the problems by removing
their resource constraints. The numbers in the third column of
Table 10 show the lower bounds of the problems. Columns 4-
9 represent deviation of the results obtained through this
research from the lower bound. In Table 10, the best result
obtained for each of the twenty generated problems has been

196 M. H. Sebt, M. H. Fazel Zarandi, Y. Alipouri

 

Project 
No. 

Optimal 
makespans 

Lower 
bound 

Difference from l.b. 
Standard-
Standard 

Standard-
Stud 

JG- 
Standard 

JG- 
Stud 

Stud-
Standard 

Stud- 
Stud 

1 43 30 14 13 13 13 12 11 
2 47 35 6 5 5 5 4 4 
3 47 36 7 6 6 6 5 5 
4 62 47 9 8 9 8 7 7 
5 39 26 8 8 8 7 7 7 
6 48 31 9 9 9 9 9 9 
7 60 50 0 0 0 0 0 0 
8 53 43 3 3 3 3 2 2 
9 49 35 11 11 11 9 8 7 
10 45 29 10 9 9 9 8 8 
11 38 28 4 4 4 4 4 4 
12 51 38 7 6 6 6 5 5 
13 43 34 2 2 2 2 1 0 
14 43 36 1 1 1 1 1 1 
15 51 41 2 2 1 1 0 0 
16 47 41 2 1 2 1 1 0 
17 47 39 0 0 0 0 0 0 
18 54 40 9 9 8 8 8 6 
19 54 44 3 3 3 3 3 3 
20 43 33 5 4 5 4 4 3 

Avg. CPU time(s) 7.274 6.056 7.503 6.342 5.973 5.214 

Table 10 Results of six hybridizations of GA variants from solving 20 generated problems



highlighted. These results show that, in all of the cases, the
Stud-Stud GAs hybridization can perform better than other
hybridizations.

Some methods are very capable of reaching their goals but are
so time-consuming that they cannot be used in real-world
applications. Considering this fact, an attempt is made to
compare six proposed GA hybridizations consideringthe aspect
of time consumption. The last row of Table 10 shows the average
CPU times required for running an iteration of each
hybridization with 100 individuals for first GA and 10
individuals for second GA to solve the 20 generated problems
with 30 activities. As it can be observed, Stud-Stud GA
hybridization requires less CPU time than others do; therefore, it
can now be strongly claimed that in RCPSP with variable activity
times, Stud-Stud GA hybridization can reach minimums far from
other hybridizations in less iterations, thus, it can be considered
as possessingmore accuracy, more speed, and less CPU time. 

5.2. Comparison of the Stud GA with other methods 

In this subsection, Stud GA as the best variant of GA to solve
the RCPSP with deterministic activity times is compared with
other metaheuristic methods. To illustrate the effectiveness of
the Stud GA, J30 project instances from PSPLIB, which
consists of 480 projects with 30 activities and 4 resource types,
were used. In J30, the optimal makespans for all instances are
known. The comparison is carried out in view of the average
deviation from the optimal makespan. 

The parameters in Table 11 are used for Stud GA. Table 12
displays the results obtained by Stud GA and other methods
with 1000 and 5000 evaluated schedules. In Table 12, we
present the type of algorithms, the type of schedule-generation
scheme used, the authors of each algorithm, and the average

deviation from the optimal solution for 1000 and 5000
schedules, respectively. The algorithms are sorted according to
descending performance regarding 1000 schedules. 

As it is observed in Table 12, Stud GA’s average deviation
from the optimal solution is 1.14% and 0.89% for 1000 and
5000 schedules, respectively. Stud GA could solve 328 out of
480 problems optimally, while in 93 instances the solution was
close to optimum. This means that the Stud GA worked well
on 421 out of 480 instances of the J30 set. Meanwhile, the
mean CPU-times of the Stud GA for 1000 and 5000 schedules
are 3.9 and 18.4 seconds, respectively. 

Considering all the results, we can conclude that the Stud GA
is competitive with the best ones currently known, having the
additional interest of its ease of coding and low computational
requirements.

6. Conclusions

In this paper, six hybridizations of GA variants were
proposed to solve RCPSP with variable activity durations.
These six tries were as follows: Standard GA with Standard
GA, Standard GA with Stud GA, Stud GA with Standard GA,
Stud GA with Stud GA, Jumping Gene with Standard GA, and
Jumping Gene with Stud GA.

These hybridizations were compared with each other by
applying them on some example projects. Simulation results
showed that the hybridization of Stud GA with Stud GA was the
most suitable solutionfor solving the RCPSP with variable
activity durations; because, this hybridization converged to
minimum makespan faster and with higher accuracy than other
hybridizations. In other words, implementation of Stud GA as
first GA to work on the durations of activities and, also, using
Stud GA to find minimum project makespan for each set of
activity durations from first GA will cause convergence and
reaching the minimum project duration faster than other hybrids.
Comparison of the Stud GA with other approaches using theJ30
standard instances in PSPLIB was also implemented.The
computational results validate the effectiveness of the Stud GA
in solving the RCPSP with deterministic activity times.

International Journal of Civil Engineering, Transaction A: Civil Engineering, Vol. 11 No. 3, September 2013 197

 

Algorithm SGS Reference 
Schedules 

1000 5000 
GAPS—random key Param. active Mendes et al. [13] 0.06 0.02 
GA—forw.–backw. Both Alcaraz et al. [11] 0.25 0.06 
GA—forw.–backw. Serial Alcaraz and Maroto [12] 0.33 0.12 
GA—FBI Serial Valls et al. [7] 0.34 0.20 
SFLA-activity list Serial Fang and Wang [27] 0.36 0.21 
SA—activity list  Serial Bouleimen and Lecocq [17] 0.38 0.23 
TS—activity list Serial Nonobe and Ibaraki [19] 0.46 0.16 
GA—self-adapting Serial Hartmann [10] 0.38 0.22 
GA—activity list Serial Hartmann [9] 0.54 0.25 
PSO—activity list Serial Zhang et al. [25] 0.69 0.42 
TS—schedule scheme Related Baar et al. [24] 0.86 0.44 
PSO—activity priorities  Serial Zhang et al. [25] 0.92 0.61 
MCEP—random key Serial Sebt et al. [28] 1.02 0.75 
GA—random key Serial Hartmann [9] 1.03 0.56 
Stud GA—priority rule Serial This paper 1.14 0.89 
GA—priority rule Serial Hartmann [9] 1.38 1.12 
GA—problem space  Mod. par. Leon and Ramamoorthy [8] 2.08 1.59 

Table 12 Average deviations (%) from optimal makespan—ProGen set J=30

Population size 10 
Mutation rate 0.1 
Crossover rate 0.5 

Number of generation 100 and 500 
Number of repetition 5 

Table 11 Simulation parameters for Stud GA



This paper has some potential future works:
One of the future prospects of the approaches proposed here

is to use other variants of EAs (Evolutionary Algorithms) such
asEPs (Evolutionary Programming) variants, and PSO variants
etc. to solve the RCPSP with variable activity durations.

Implementation of evolutionary algorithms variants on the
other families of RCPSP, such as the Multi-mode RCPSP and
Preemptive RCPSP etc. to find the most powerful algorithm as
their solution can be another prospect for future studies.

References

Blazewicz, J., Lenstra, J.K. and Rinooy Kan, A.H.G.
“Scheduling subject to resource constraints: Classification and
complexity”, Discrete Applied Mathematics, 5, pp 11–24 (1983).
Demeulemeester, E.L. and Herroelen, W.S. “New benchmark
results for the resource-constrained project scheduling
problem”, Management Science, 43, pp 1485–1492 (1997).
Sprecher, A. “Scheduling resource-constrained projects
competitively at modest memory requirements”, Management
Science, 46, pp 710–723 (2000).
Tormos, P. and Lova, A. “A competitive heuristic solution
technique for resource-constrained project scheduling”, Annals
of Operations Research, 102, pp 65–81 (2001).
Möhring, R., Schulz, A., Stork, F. and Uetz, M. “Solving project
scheduling problems by minimum cut computations”,
Management Science, 49(3), pp 330–350 (2003).
Lee, J.K. and Kim, Y.D. “Search heuristics for resource
constrained project scheduling”, Journal of the Operational
Research Society, 47, pp 678–689 (1996).
Valls, V., Ballestin, F., Quintanilla, M.S. “Justification and
RCPSP: a technique that pays’, European Journal of
Operational Research,165, pp 375–86 (2005).
Leon, V.J. and Ramamoorthy B. “Strength and adaptability of
problem-space based neighborhoods for resource-constrained
scheduling”, OR Spektrum 17, pp 173–182 (1995).
Hartmann, S. “A competitive genetic algorithm for resource-
constrained project scheduling”, Naval Research Logistics, 45,
pp 733–750 (1998).
Hartmann, S. “A self-adapting genetic algorithm for project
scheduling under resource constraints”, Naval Research
Logistics, 49, pp 433–448 (2002).
Alcaraz, J., Maroto, C. and Ruiz, R. “Improving the
performance of genetic algorithms for the RCPS problem”.
Proceedings of the ninth international workshop on project
management and scheduling, Nancy France, pp 40–43 (2004).
Alcaraz, J. and Maroto, C. “A robust genetic algorithm for
resource allocation in project scheduling”, Annals of Operations
Research, 102, pp 83–109 (2001).
Mendes, J.J.M., Gonçalves, J.F. and Resende, M.G.C. “A
random key based genetic algorithm for the resource
constrained project scheduling problem”, Computers &
Operations Research, 36, pp 92–109 (2009).
Boctor, F.F. “An adaptation of the simulated annealing
algorithm for solving resource-constrained project scheduling
problem”, International Journal of Production Research, 34, pp
2335–2351 (1996).
Cho, J.H. and Kim, Y.D. “A simulated annealing algorithm for
resource constrained project scheduling problems”, Journal of
the Operational Research Society, 48, pp 736–744 (1997).
Bouleimen, K. and Lecocq, H. “A new efficient simulated
annealing algorithm for the resource-constrained project
scheduling problem”, In: G. Barbarosoglu, S. Karabati, L.
Özdamar, G. Ulusoy, Eds., Proceedings of the Sixth International
Workshop on Project Management and Scheduling, Bogazici
University Printing Office, pp 19–22 (1998).

Bouleimen, K. and Lecocq, H. “A new efficient simulated
annealing algorithm for the resource-constrained project
scheduling problem and its multiple mode version”, European
Journal of Operational Research, 149, pp 268–281 (2003).
Slowinski, R., Soniewicki, B. and Weglarz, J. “DSS for
multiobjective project scheduling”, European Journal of
Operational Research, 79, pp 220–229 (1994).
Nonobe, K. and Ibaraki, T. “Formulation and tabu search algorithm
for the resource constrained project scheduling problem”, In: C.C.
Ribeiro, P. Hansen, Eds., Essays and Surveys in Metaheuristics,
Kluwer Academic Publishers, pp 557–588 (2001).
Valls, V., Quintanilla, S. and Ballestin, F. “Resource-constrained
project scheduling—a critical activity reordering heuristic”,
European Journal of Operational Research, 149, pp 282–301 (2003).
Artigues, C., Michelon, P. and Reusser, S. “Insertion techniques
for static and dynamic resource-constrained project
scheduling”, European Journal of Operational Research, 149, pp
249–267 (2003).
Pinson, E., Prins, C. and Rullier, F. “Using tabu search for solving
the resource constrained project scheduling problem”, Technical
Report, Universite Catholique de l’Ouest, Angers, (1994).
Gagnon, M., Boctor, F.F. and d’Avignon, G. “A tabu search
algorithm for the resource-constrained project scheduling
problem”, In: Proceedings of administrative sciences
association of Canada annual conference, (2004).
Baar, T., Brucker, P. and Knust, S. “Tabu-search algorithms and
lower bounds for the resource-constrained project scheduling
problem”, In: Voss S, Martello S, Osman I, Roucairol C, EDs.,
Meta-heurisitics: advances and trends in local search paradigms
for optimization. Dordrecht: Kluwer, pp 1–8 (1998).
Zhang, H., Li, X., Li, H. and Huang, F. “Particle swarm
optimization-based schemes for resource-constrained project
scheduling”, Automation in Construction, 14, pp 393– 404 (2005).
Chen, R.M., Wu, C.L., Wang, C.M. and Lo, S.T. “Using novel
particle swarm optimization scheme to solve resource-
constrained scheduling problem in PSPLIB”, Expert Systems
with Applications, 37, pp 1899–1910 (2010).
Fang, C. and Wang, L. “An effective shuffled frog-leaping
algorithm for resource-constrained project scheduling
problem”, Computers & Operations Research, 39, pp 890–901
(2012).
Sebt, M.H., Alipouri, Y. and Alipouri, Y. “Solving resource-
constrained project scheduling problem with evolutionary
programming”, Journal of the Operational Research Society
advance online publication, doi:10.1057/jors.2012.69, (2012).
Long, L.D. and Ohsato, A. “Fuzzy critical chain method for
project scheduling under resource constraints and uncertainty”,
International Journal of Project Management, 26, pp 688–698
(2008).
Demeulemeester, E.L. and Herroelen, W.S. “Project scheduling: a
research handbook”, Kluwer Academic Publishers, 685p (2002).
Khatib, W. and Fleming, P.J. “The Stud GA: A Mini
Revolution?”, Springer, pp 683-691 (1998). 
Fedoroff , N. and Botstein, D., Eds., “The Dynamic Genome:
Barbara Mc-Clintock’s ideas in the century of genetics”, Cold
Spring Harbor, New York: Cold Spring Harbor Laboratory
Press, (1992).
Tang, W.K.S., Kwong, S.T.W. and Man, K.F. “A jumping genes
paradigm: theory, verification, and applications”, IEEE Circuits
and Systems mag., 8, pp 18-38 (2008).
Haupt, R.L. and Haupt, S.E. “Practical Genetic Algorithms”,
second ed., John Wiley & Sons, Inc., Publication, (2004).
Brucker, P., Drexl, A., Mohring, R., Neumann, K. and Pesch, E.
“Resource-constrained project scheduling: notation,
classification, model, and methods”, Eur. J. Operat. Res., 107,
pp 272–288 (1998).
Kolisch, R. “Serial and parallel resource-constrained project
scheduling methods revisited: theory and computation”, Eur. J.
Operat. Res., 90, pp 320–333 (1996).

198 M. H. Sebt, M. H. Fazel Zarandi, Y. Alipouri

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]


