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Abstract 

In this paper, normalized displacement amplitude of the ground surface was presented in the presence of the semi-sine 
shaped valley above the truncated circular cavity embedded in a homogenous isotopic linear elastic half-plane, subjected to 
obliquely propagating incident SH waves as Ricker wavelet type. The proposed direct time-domain half-plane boundary 
element formulation was used and extended to analyze the combined multi-boundary topographic problems. While using it, 
only boundary of the valley and the surrounding cavity should be discretized. The effect of four geometric parameters 
including shape ratio of the valley, depth ratio, horizontal location ratio and truncation thickness of the cavity and incident 
wave angle was investigated on the responses at a single dimensionless frequency. The studies showed that surface behavior 
was completely different due to complex topographic features, compared with the presence of either valley or cavity alone. In 
addition, the cavity existence below the surface could play a seismic isolation role in the case of vertical incident waves and 
vice versa for oblique waves. 
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1. Introduction 

Recent earthquakes have shown that many factors 
affect ground surface response, among which effects of 
wave source, path of wave motion and site conditions can 
be pointed out. In this regard, site effects and status of 
surface and subsurface roughness are always of the most 
important factors in the formation of different patterns of 
ground response. Therefore, better and simpler modeling 
of topography effects can be extremely affected by 
identifying the exact behavior of ground surface. 

In the literature, different methods are available for 
preparing surface/subsurface topographic feature models 
such as analytical, semi-analytical and numerical ones [1]. 

Among the analytical works, Lee and Trifunac [2] 
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presented an exact solution in terms of cylindrical wave 
functions to analyze the ground response due to embedded 
lined circular cavity. Using method of matched asymptotic 
expansion, Datta and Shah [3] showed free-surface 
response in the presence of buried circular cavities. 
Manoogian and Lee [4] and Manoogian [5] applied 
weighted residual method to the problem of diffraction of 
SH waves by subsurface arbitrarily shaped inclusions and 
lined cavities, respectively. One of the few studies in 
which a close-form solution was presented for the 
composed topographies was the studies by Lee et al. [6]. 
They were able to propose an exact analytic series solution 
for a semi-circle canyon above a subsurface unlined 
circular cavity. In the work by Smerzini et al. [7], an 
analytical solution was obtained to determine the response 
of embedded lined/unlined circular cavity and inclusion. 
These researchers used expansion of wave functions in 
terms Bessel and Hankel functions and asked the 
assistance of Graf’s addition theorem to satisfy their 
boundary conditions. Among the recent works, studies by 
Tsaur and Chang [8] can be also referred to. They derived 
a series solution to the SH wave scattering problem of an 
embedded truncated circular cavity using the region-
matching technique. 

Despite high accuracy of the analytical and semi-
analytical methods because of non-extension to modeling 
of complex geometric problems, nowadays numerical 
methods have been widely used. To analyze the seismic 
behavior of topographic features and solve the wave 
scattering problems using numerical methods, it is possible 
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to use volumetric and boundary methods. In the volumetric 
methods such as finite element method (FEM) and finite 
difference method (FDM), discretizing the whole 
considered domain including inner and boundary of the 
body is required. Also, it is needed to define boundaries as 
energy absorber boundaries to satisfy radiation conditions 
of waves at infinite boundaries. These agents not only 
complicate the problem but also increase data volume and 
analysis time. On the other hand, due to reducing one 
dimension in the modeling and automatically satisfying the 
radiation conditions of waves in the basic formulation, 
boundary element method (BEM) is an appropriate and 
good method, especially for modeling infinite and semi-
infinite continuous media [9, 10].  

Although it is possible to use BEM in the time and 
frequency domain, combining with other volumetric 
methods and seismic analysis of nonlinear media, dynamic 
analysis of various problems including time-dependent 
geometry and determining real-valued results can be only 
obtained by step-by-step analysis in the time domain. 
Among the pioneer researchers, Friedman and Shaw [11] 
gave the first form of boundary element (BE) formulation 
in the time domain for two-dimensional antiplane 
problems. Due to small accuracy of their presented full-
plane kernels, they have been scarcely used by other 
researchers. Mansur and Brebbia [12] and Mansur [13] 
were able to present the general form of time-domain BE 
formulation as well as transient full-plane displacement 
and traction kernels for antiplane elastodynamic problems 
for the first time. Because the Heaviside function was 
considered in the extracted BE formulation, their kernels 
were proposed in terms of different states of wave front so 
that later Dominguez [14] displayed a better view of them 
by improving basic mathematics of Mansur’s kernels. 
Regardless of Heaviside functions and assuming linear 
time shape functions at each time step, Israil and Banerjee 
[15] showed more compact and simpler form of transient 
full-plane kernels of scalar wave equation. As first 
researchers, Kamalian et al. [16] modified the transient 
elastodynamic full-plane kernels of Israil and Banerjee 
[15] and used them in time-domain BEM algorithm to 
analyze the site response. Recently, Yu et al. [17] and 
Soares and Mansur [18] improved the time-domain BEM 
formulation for scalar wave equation and analyzed various 
problems with better accuracy. 

The previous paragraphs described the development of 
time-domain BEM based on full-plane fundamental 
solution or full-plane kernels. If this type of formulation is 
used to prepare the topographic feature models, then, the 
smooth ground surface is needed to be discretized to 
distances too far away from the interested zone. Also, in 
order to avoid singularity problems in the numerical 
integration process, it is necessary to close the domain by 
defining a set of virtual boundary called “enclosing 
elements” [19]. According to this modeling procedure, 
several authors elaborated on numerical models of 
topographic features and analyzed them. Using frequency-
domain full-plane BEM, Sanchez-sesma and Campillo 
[20] and Dravinski [21] analyzed the surface topography 
including various types of valley and hill. Yu and 

Dravinski [22] investigated the effects of subsurface 
inclusions and cavities containing corrugated interface on 
the smooth ground surface response in the frequency 
domain. In the time-domain, Takemia and Fujiwara [23] 
and Kamalian et al. [24-27] were able to use the full-plane 
BEM formulation for analysis of arbitrarily shaped canyon 
and hill features as well. Alielahi et al. [28] developed a 
time-domain BEM formulation for multi-boundary 
problems in the full-space media and evaluated effects of 
an embedded circular cavity on the smooth ground 
displacements. On the other hand, in the BEM 
formulation, half-plane fundamental solutions or half-
plane kernels could be used instead of full-plane case [29]. 
Accordingly, the smooth ground surface meshing was 
removed completely, the boundary condition was satisfied 
exactly, only the boundary of the surface features and the 
surrounding subsurface openings was discretized and 
finally time of analysis and accuracy of results were 
improved in this regard. Many studies can be found using 
half-plane BEM formulation in the frequency domain and 
works of Wong and Gennings [30], Sanchez-sesma and 
Rosenblueth [31], Ohtsu and Uesugi [32], Reinoso et al. 
[33] and Ausilio et al. [34] for analysis of surface features 
and Benites et al. [35] for analysis of subsurface 
topography can be pointed out. Due to complexity of the 
half-plane time-domain BEM formulation, few studies can 
be found in the literature and only works by Hirai [36] and 
Belytschko and Chang [37] are available for analysis of 
hallow and alluvial valleys, respectively. Recently, Panji et 
al. [38] reported elastodynamic antiplane half-plane time-
convoluted kernels of scalar wave equation as analytical 
and implemented them in time-domain BEM algorithm to 
analyze various types of surface/subsurface topographic 
features. 

A review of literature shows that the presented 
analytical solutions are for simple and noncomplex 
topographic models. In addition, many numerical studies 
have been carried out in the frequency domain for either 
surface or subsurface topography alone and have not 
investigated their combined interaction effects on the 
ground response. Therefore, in this paper, considering a 
model that is actually more visible in the nature, i.e. a 
semi-sine shaped valley above an embedded truncated 
circular cavity, normalized displacement amplitude of 
ground surface were obtained under obliquely propagating 
incident SH waves by the developed time-domain half-
plane BEM. An extensive parametric study was conducted 
to determine ground surface displacements by changing 
geometric characteristics of the model such as shape ratio, 
depth ratio, horizontal location ratio, truncation thickness 
ratio as well as incident wave’s angle. The main purpose 
of this manuscript included demonstrating effect mode of 
the mentioned parameters on changing the ground surface 
patterns at a fixed frequency and preparing simple models 
in the use of half-plane BEM formulation for analyzing 
complex irregular sites. 
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2. Time-Domain Half-Plane BEM 

For propagation of antiplane waves (SH-wave) in a 
homogenous isotopic linear elastic half-plane, the scalar 
wave equation was as follows [39]: 

 
߲ଶݑሺݔ, ,ݕ ሻݐ

ଶݔ߲ ൅
߲ଶݑሺݔ, ,ݕ ሻݐ

ଶݕ߲ ൅ ܾሺݔ, ,ݕ ሻݐ ൌ
1
ܿଶ

߲ଶݑሺݔ, ,ݕ ሻݐ
ଶݐ߲  (1) 

 
where ݑሺݔ, ,ݕ  ሻ is out of plane displacement at pointݐ

ሺݔ,   is shear wave velocity and ܿ ,ݐ ሻ and current timeݕ

ܾሺݔ, ,ݕ  ሻ is antiplane body force corresponding toݐ
displacement direction. The stress-free condition of 
smooth ground surface which must be satisfied exactly for 
actual half-plane problems was as follows: 

 

ߤ
,ݔሺݑ߲ ,ݕ ሻݐ

߲݊
|௬ୀ଴ ൌ 0 (2) 

 
In which ߤ and ݊ are the shear modulus and normal 

vector, respectively, and ݕ denotes vertical coordinate axis 
along the half-plane depth (Fig. 1). 

 

 
Fig. 1 Waves field for considered combined topographic feature in the current study 

 
After applying weighted residual integral to Eq. (1), 

removing domain integral statements by boundary 
methods and ignoring contributions from initial conditions 
and body forces, the modified boundary integral equation 
(BIE) for SH-wave scattering problem in a half-plane was 
obtained as follows[14, 32- 33, 40-42]: 

 
ܿሺࣈሻݑሺࣈ, ሻݐ
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଴୻
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(3) 

 
In which כݑሺ࢞, ;ݐ ,ࣈ ߬ሻ and כݍሺ࢞, ;ݐ ,ࣈ ߬ሻ denote transient 

half-plane displacement and traction fundamental solution 

in position ࢞ and current time ݐ due to a unit antiplane 
impulsive force in position ࣈ and preceding time ߬, 
respectively, ݑ and ݍ are boundary displacements and 
tractions, respectively, Γሺ࢞ሻ indicates boundary of body, 
ܿሺࣈሻ is geometry coefficient and ݑ௙௙ሺࣈ, -ሻ denotes freeݐ
field displacements which are obtained from the site 
response without surface or subsurface irregularities. To 
carry out the analytical temporal integration and numerical 
spatial integration, after discretizing the time axis by ܰ 
equal increments with duration Δݐ) ݐ ൌ ܰ Δݐ) in the use of 
linearly shaped functions and meshing the boundary of 
body by ܯ elements in utilizing the quadratic boundary 
elements, the above equation can be presented in the 
following way as a simplified form resulting from 
eliminating singularity terms from wave fronts: 
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where ଵܷ

ேି௡ାଵሺ࢞, ሻࣈ ൅ ܷଶ
ேି௡ሺ࢞,  ሻ andࣈ

ܳଵ
ேି௡ାଵሺ࢞, ሻࣈ ൅ ܳଶ

ேି௡ሺ࢞,  ሻ denote the half-planeࣈ
displacement and traction time-convoluted kernels 

proposed as analytic expressions by Panji et al. [38], ݑே 
and ݑ௙௙.ே stand for the boundary and free field 
displacement at time ݐ ൌ ܰ Δݐ, respectively, ఈܰሺߢሻ is 
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quadratic shape functions in terms of local intrinsic 
coordinates (ߙ ൌ 1, 2, 3) and  ܬ indicates Jacobian of 
transformation from Cartesian to local coordinates 
systems. ݑ௡ and ݍ௡ are displacements and tractions of 
boundary, respectively. Γ௠ stands for portion of the 
boundary to which element "݉" belongs.  After spatial 
integration of Eq. (4) for each boundary node located on 
Γ௠, the following equation in the matrix form can be 
obtained: 

 

෍ ௡ሽ࢛ேି௡ାଵ ሼࡴ ൌ ෍  ௡ሽࢗேି௡ାଵ ሼࡳ

ே

௡ୀଵ

൅ 

ே

௡ୀଵ

ሼ࢛௙௙.ேሽ (5) 

 
in which ࡴேି௡ାଵ and ࡳேି௡ାଵ are the matrices whose 

elements are determined by integration over the boundary 
elements, ሼ࢛௡ሽ and  ሼࢗ௡ሽ are vectors of boundary nodal 
quantities at the time step ݊. This form of Eq. (5) cannot 
be solved straightforwardly. After applying the boundary 
conditions specified as known displacement or traction at 
each boundary node and reordering the matrix columns 
corresponding to unknown boundary quantities to the left, 
the soluble form of the above equation was derived as 
follows: 

 
ሾ࡭ଵ

ଵሿሼࢄேሽ ൌ ሾ࡮ଵ
ଵሿሼࢅேሽ ൅ ሼࡾேሽ ൅ ሼ࢛௙௙.ேሽ (6) 

 
where ሼࢄேሽ and ሼࢅேሽ are vectors of unknown and 

known boundary quantities, respectively, ሾ࡭ଵ
ଵሿ and ሾ࡮ଵ

ଵሿ 
are the matrices whose columns are corresponding to 
unknown and known boundary quantities, respectively, 
and need to be only computed in the first time step for 
problems with time independent geometry, ሼ࢛௙௙.ேሽ is 
vector of including free field displacements which must be 
computed in each time step and added to the right hand 
side of Eq. (6), and ሼࡾேሽ denotes effects of past dynamic 
history on the current time node ܰ, presented as follows: 

 

ሼࡾேሽ ൌ ෍ሺࡳேି௡ାଵ ሼࢗ௡ሽ െ ௡ሽሻ࢛ேି௡ାଵ ሼࡴ
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 (7) 

 
After solving Eq. (6) in each time step, all unknown 

boundary quantities including displacement or traction can 
be obtained. To determine the response values beyond the 
valley boundary on the smooth ground surface as internal 
points, the geometry coefficient ܿሺࣈሻ can be assumed 
equal to unit in Eq. (3) and the above steps can be 
repeated. 

3. Excitation Waves Type 

The type of excitation waves was assumed as the 
Ricker wavelets according to the following function [40, 
43]: 

 

݂ሺݐሻ ൌ ቂ1 െ 2൫ߨ ௣݂ሺݐ െ ଴ሻ൯ݐ
ଶ

ቃ ݁ି൫గ ௙೛ሺ௧ି௧బሻ൯
మ
 (8) 

 
where ௣݂ and ݐ଴ are predominant frequency and time 

shift parameter, respectively. Considering that antiplane 
response was desirable, the incidence displacement was 
SH-wave type as follows: 
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.௜௡௖ݎ

ܿ
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in which ܽ௠௔௫ and ܪሺ. ሻ indicate the maximum 

displacement time history and Heaviside function, 
respectively, and argument ߙ௜௡௖. denotes phase of incident 
waves in location ݎ௜௡௖. and time ݐ is to be measured from a 
specified location in which the origin of coordinates was 
assumed as in Fig. 1 (point O). To satisfy the boundary 
condition in Eq. (2), it is necessary to consider a reflected 
wave field including the reverse phase as follows: 
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where ݑ௥௘௙.ሺݔ, ,ݕ  ሻ is the reflex displacement andݐ

 .௥௘௙.indicates the phase of reflected waves. By adding Eqߙ
(9) and Eq. (10), the free field displacement can be 
obtained as: 

 

,ݔ௙௙ሺݑ ,ݕ ሻݐ ൌ  ܽ௠௔௫ .

ۉ

ۈۈ
ۇ

     ൥1 െ 2 ቆ
௣݂ ߨ

ܿ
௜௡௖.ቇߙ 

ଶ

൩ ݁
ି൬

గ ௙೛
௖ ఈ೔೙೎.൰

మ

ܪ ቆݐ െ
.௜௡௖ݎ

ܿ
ቇ ൅

൥1 െ 2 ቆ
௣݂ ߨ

ܿ
௥௘௙.ቇߙ 

ଶ

൩ ݁
ି൬

గ ௙೛
௖  ఈೝ೐೑.൰

మ

ܪ ቆݐ െ
.௥௘௙ݎ

ܿ
ቇ

ی

ۋۋ
ۊ

  (11) 

 
in which: 
 

.௜௡௖ߙ ൌ ܿ ሺݐ െ ଴ሻݐ ൅ ; .௜௡௖ݎ .௜௡௖ݎ    ൌ  െߠ݊݅ݏ. ݔ ൅ .ߠݏ݋ܿ ݕ  (12)
 
For the incidence wave field and: 
 

.௥௘௙ߙ ൌ ܿ ሺݐ െ ଴ሻݐ ൅ ; .௥௘௙ݎ .௥௘௙ݎ   

ൌ  െߠ݊݅ݏ. ݔ െ .ߠݏ݋ܿ   ݕ
(13) 

 
For the reflected wave filed. ߠ is the angle of excitation 

waves as in Fig.1, and ሺݔ,  ሻ indicates coordinates ofݕ
boundary nodes. ݑ௙௙ shown in Eq.(11) must be placed in 
the left hand side of Eq.(3). 

4. Validation Example 

The above formulation was implemented in a general 
time-domain BEM code known as DASBEM (Dynamic 
Analysis of Structures using Boundary Element Method). 
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This algorithm is able to analyze all dynamic problems 
including antiplane seismic evaluation of 
surface/subsurface topographic features either alone or in 
combined cases and also cover problems due to external 
vibrations resulting from arbitrarily functional time-
dependent loads. Verifications of DASBEM with those of 
the published works in the solving of single features such 
as full/truncated semi-circle valley and full/truncated 
embedded circular cavity can be found in the work by 
Panji et al. [38]. But, considering that this study was 
concerned with the investigation of the combined effects 
of surface and subsurface features, the analytical work of 
Lee et al. [6] was selected as the benchmark. Fig. 2 shows 
a validation example as well as their discretized zones. As 
can be observed, a semi-circle valley was located the 
above the circular cavity embedded in depth of 2.5 ܾ due 
to obliquely propagating incident SH waves. The number 
of nodes which were defined on the valley, cavity and 
beyond the valley was equal to 63, 62 and 80, respectively. 

The time step was selected equal to 0.005 sec. The Ricker 
wavelet specifications were equal to 3.0 Hz, 2.0 s and 
0.001 m for predominant frequency, time shift parameter 
and maximum amplitude, respectively. The normalized 
displacement amplitude (the ratio of Fourier amplitude of 
the total motion obtained by BEM to the Fourier amplitude 
of the incident motion) of valley surface and its beyond 
can be observed in Fig. 3 due to incidence wave with 
angles of 0, 30, 60 and 90 degrees at dimensionless 
frequency of 12/ߨ (the dimensionless frequency denoted 
by ࣁ is defined as ߱ ܾ ⁄ܿ ߨ , in which ߱ presents angular 
frequency of the wave, ܾ is the radius of canyon and ܿ is 
the shear wave velocity). As can be seen in Fig. 3, the 
accuracy of results was favorable and in good agreement 
with SH-wave scattering problem from combined 
topographic features. 

 
 

 

 
Fig. 2 Schematic half-plane BEM model for the validation example: a semi-circle valley above a subsurface circular cavity in depth of 2.5b 

subjected to obliquely propagating incident SH waves as the Ricker wavelets type 
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Figure 3. The response of the ground surface in the presence of a semi-circle valley above an embedded circular cavity in depth of 2.0 at 

dimensionless frequency (η) of 12/π 
 

5. Methodology of the Numerical Study 

For a more realistic model of the canyon on the 
subsurface hole, the semi-sine shaped cross section in 
accordance with the following function was considered for 
the valley and a horseshoe-shaped unlined tunnel 
(truncated circular cavity) embedded beneath it was 

assumed as in Fig. 4: 
 

ሻݔሺߞ ൌ െ0.5 ݄ ቀ1 ൅ cos ቀ
ݔߨ
ܾ

ቁቁ  |ݔ|  ൑ ܾ 

ሻݔሺߞ ൌ 0 |ݔ|            ൐ ܾ 
(14) 

 
Fig. 4 Schematic model for the numerical study: a semi-sine shaped valley above an embedded truncated circular cavity subjected to 

obliquely propagating incident SH waves as the Ricker wavelets type 
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where ݄ and ܾ denote depth and half-width of the 
valley, respectively. In order to carry out parametric 
studies, four geometrical ratios, namely shape ratio 
(ܴܵ ൌ ݄ ܾ⁄ ), depth ratio (ܴܦ ൌ ܪ ܾ⁄ ), location ratio 
ܴܮ) ൌ ܦ ܾ⁄ ) and truncation ratio (ܴܶ ൌ ݄଴ ܾ⁄ ) as well as 
angle of excitation waves (ߠ) were investigated to obtain 
the site response and achieve the normalized displacement 
amplitude. The values of 0.0, 0.1, 0.3, 0.5 and 1.0 for 
shape ratio, 2.5, 4.0, 6.0 and 8.0 for depth ratio, 0.0, 2.0, 
4.0 and 8.0 for location ratio, 0.0, 0.4, 0.65 and 1.0 for 
truncation ratio and finally 0.0, 30, 60 and 90 degrees for 
angle of incident waves were considered. When the effect 
of these parameters was not evaluated alone, the values of 
0.5, 2.5, 0.0 and 0.4 were assumed for ratios of shape, 
depth, location and truncation, respectively [8, 44]. In all 
the cases, excitation waves had a predominant frequency 
equal to 3 Hz and a time shift parameter was considered 
from 2 to 5 sec depending on the depth and position of the 
cavity. A uniform discretization was carried out on both 
surfaces of valley and cavity with the distance of nodes 
equal to 10 m. In this study, due to the interests of 
engineering, half-width of the valley was assumed equal to 
the radius of the cavity (ܽ ൌ ܾ) and the results were 
presented at dimensionless frequency of 2.0 (actual 
frequency of 4 Hz), approximately corresponding to 
incident waves with short wavelength [5-6]. 

Finding the answers for these questions was the main 
purpose of the numerical study: How could the response of 
the ground surface in the existence of the valley above the 
truncated cavity be changed with different shape ratios 
compared to those of without valley? What is the ground 
response to changes of the depth and horizontal positions 
of the truncated cavity compared to the case of non-cavity 
half-plane? What is the effect on the response patterns due 
to changes in the cavity section from full-circle to semi-
circle? Which angle of incident waves obtains the 
maximum ground response in a fixed position for 
combined topographies? 

6. General Time-Domain Response 

To view general patterns of responses in the time 
domain, Fig. 5 was presented. In this figure, scattering and 
diffraction of waves in the presence of a semi-sine shaped 
valley with ܴܵ ൌ 1.0 can be observed above an embedded 
truncated cavity in depth of 2.5ܾ. The responses were 
shown in the range of 3ܾ to െ3ܾ on the ground surface. 
Despite the responses in the frequency domain, effect of 
reflection and diffraction of waves can be seen in the time 
domain. 

 

 
Fig. 5 Time-domain response of the ground surface in the presence of a semi-sine shaped valley with shape ratio equal to 1.0 (SR=1.0) above 

an embedded truncated circular cavity in depth of 2.5b 
 
As can be seen in Fig. 5, in the case of vertically 

propagating incident waves, in addition to maintaining the 
symmetry of responses, small amplitude of displacements 
existed inside the valley and large amplitudes can be 
observed in the edges. Considering that the phase 
difference of the direct and reflected waves from the 

surface of valley was greater than the smooth ground 
surface, effects of their separation was clearly specified. 
However, because of the existence of zero phase 
difference on the smooth surface, the responses tended to 
the free-field motion with distance from the valley surface. 
In general, the type of diffracted waves which seemed to 



International Journal of Civil Engineering Vol. 12, No. 2, Transaction B: Geotechnical Engineering, April 2014 167 
 

be started from the edges and propagated on the curvature 
surface of the valley was called “creeping waves” [40, 45]. 
Separating the contribution of these waves from total 
response was difficult. As can be seen, contribution of 
reflected waves from cavity surface was also found. This 
type of secondary reflected waves as cascading flow 
started from the end of primary reflected waves and got 
away from valley surface with the certain slope due to 
increase of distance between observation points and source 
points on the smooth ground and valley surface, 
respectively. 

In the case of inclined waves, the ground behavior left 
the symmetry state and scattered waves with large 
amplitude can be seen on the side of near the arrival wave 
front. It is obvious that, by increasing the angle of incident 
waves, the response amplitudes increased in the edge of 
the close to the wave front. Also, the trapped and multiple 
reflections of waves increased between the valley and 
cavity surface on that side. 

7. Frequency-Domain Response 

The general pattern of surface displacement and 
observing its behavior under seismic forces was only 
possible in the frequency domain. Fig. 6 was presented for 
this purpose. In this figure, due to different angles of 
incident waves, the amplitude of normalized displacements 
of ground surface in the range of 3ܾ to െ3ܾ versus 
dimensionless frequencies was plotted for a valley with 
ܴܵ ൌ 1.0 above a truncated circular cavity embedded in 
depth of 2.5ܾ. As can be seen, the responses were 
generally at the valley slopes smaller than its edges. 
Although increasing the dimensionless frequency (or 
decreasing the dimensionless period defined as ratio of 
incident wavelength to total width of the valley) influences 
on the formation of the responses, it was seen that the 
amplitudes were not varied very much by changes of the 
frequency in the vertically incident waves. 

 

 
Fig. 6 The response of the ground surface versus different dimensionless frequencies in the presence of a semi-sine shaped valley with 

SR=1.0 above an embedded truncated circular cavity in depth of 2.5b  
 
In the case of oblique waves, the behavior was 

completely different. In this case, the maximum responses 
were observed in the edges near the arrival wave front and 
fluctuations of response can be also seen on that side. With 
increasing the angle of incident waves, the amplitude of 
responses decreased on the side away from the entrance 
wave front and increased on another side so that the 
hollow valley and cavity played the role of guard trench 
against the wave front and did not allow for the waves to 
have significant impact behind the valley. In other 
references [46], this effect has been mentioned as “shadow 
zone”, leading to the formation of standing patterns in 
responses at those points. 

7.1. Shape ratio effect 

The geometric parameter of valley shape ratio (ܴܵ) 
was studied to see the effect of its height on surface 
displacements. In Fig. 7, the normalized displacement 
amplitude of ground surface is shown for different shape 
ratios of the valley in the presence of a truncated circular 
cavity embedded in the depth of 2.5ܾ at dimensionless 
frequency of 2.0 under obliquely propagating incident SH 
waves including various angles. As can be observed in the 
case of vertically propagating waves, the lowering effects 
(seismic isolation) in the response were specified clearly 
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due to the cavity existence so that the resulted 
displacements were small in all shape ratios on the valley 
surface and its edges compared with the smooth ground 
surface (ܴܵ ൌ 0.0). Also, in this case, deepening the 
valley was not highly affected in the increase of response 
amplitude on the valley surface and its fluctuations only 
increased. However, in the case of obliquely propagating 

waves, isolation effects of cavity decreased on the 
responses compared to smooth ground so that large 
displacements were shown on the deep valley in the angles 
of 60 and 90 degrees. The important point was that the 
shape ratio effects changed the obtained amplitudes on that 
side, which was farther away from the arrival wave front. 

 
 

 
Fig. 7 The effect of the valley shape ratio (SR=h/b) on the response of the ground surface in the presence of an embedded truncated cavity in 

depth of 2.5b at dimensionless frequency 2.0 
 

7.2. Depth ratio effect 

Perhaps, investigation of the cavity depth showed 
better effect of underground openings on the ground 
response. In this regard, in Fig 8, the normalized 
displacement amplitude of the surface was presented for 
different depth ratios (ܴܦ ൌ ܪ ܾ⁄ ) in the presence of a 
valley with the shape ratio of 0.5 at dimensionless 
frequency of 2.0, subjected to obliquely propagating 
incident SH waves. As displayed in the previous section, in 
the case of vertically propagating waves, existence of the 
underground cavity had the complete role of seismic 
isolation so that the responses on the valley increased with 
increasing the depth of truncated cavity and the maximum 
response was reserved for a half-plane without embedded 

hole (ܴܦ ൌ  ∞). Nevertheless, increasing the depth ratio 
affected the response reduction in the edges near the 
valley. On the other hand, in the case of inclined waves, 
the cavity isolation effect was eliminated on decreasing the 
displacement amplitudes with increasing the incident wave 
angle, especially on the side of near the arrival wave front, 
to observe the maximum amplitude on the valley in the 
smallest depth of the cavity (ܴܦ ൌ 2.5) for wave angels of 
60 and 90 degrees. As can be shown in Fig. 8, for the 
mentioned wave angles, the responses almost approached 
the free-field motion on the side near the arrival wave 
front for a non-hole half-plane case (ܴܦ ൌ  ∞). It should 
be noted that reduction of the response fluctuations can be 
always seen with decreasing the wave’s angle. 
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Fig. 8 The effect of the cavity depth ratio (DR=H/b) on the response of the ground surface in the presence of a semi-sine shaped valley with 

SR=0.5 at dimensionless frequency 2.0 
 

7.3. Location ratio effect 

In this section, horizontal location effect of truncated 
cavity is investigated on the ground surface response in its 
fixed depth of 2.5b. Fig. 9 shows the normalized 
displacement amplitude of the valley surface and its 

beyond with shape ratio of 0.5 in various location ratios 
ܴܮ) ൌ  of embedded truncated cavity at (ܾ/ܦ
dimensionless frequency of 2.0 due to different angles of 
antiplane seismic incident waves including 0, 30, 60 and 
90 degrees. 

 
Fig. 9 The effect of the cavity horizontal location ratio (LR=D/b) on the response of the ground surface for DR=2.5 in the presence of a semi-

sine shaped valley with SR=0.5 at dimensionless frequency 2.0 
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As can be seen, in addition to increasing the responses 
on the valley, they were converged to the answer of non-
hole half-plane case (ܴܮ ൌ  ∞) by moving the horizontal 
location of the cavity in vertically propagating waves. The 
part of the valley which was close to entrance wave front 
or, in other words, the part of the valley which was far 
from the cavity location, was rapidly converged. The low 
scattering and diffraction of the waves from the cavity 
crest surface on that side can cause this subject. Although 
the response fluctuations increased in the case of inclined 
waves, these oscillations focused on the responses of non-
hole half-plane case so that their amplitudes decreased 
with increasing the location ratio (ܴܮ). Unlike the vertical 
waves, the maximum response on the valley belonged to 
the case of the cavity without eccentricity (ܴܮ ൌ 0) for the 
oblique waves. 

7.4. Truncation ratio effect 

Fig. 10 shows effect of truncation thickness ratio (ܴܶ) 
of circular cavity on the ground surface response. In this 
figure, normalized displacement amplitude of the surface 
was presented in the presence of a valley with shape ratio 
of 0.5 above a cavity immersed in the depth of 2.5b 
including different truncation ratios at dimensionless 
frequency of 2.0 subjected to obliquely propagating 
incident SH waves as 0,30, 60 and 90 degrees. As can be 
seen, varying the cavity section from full-circle (ܴܶ ൌ
0.0) to semi-circle (ܴܶ ൌ 1.0) had little effect on the 
seismic response of the ground, except a few insignificant 
changes in the response behavior of that part of the valley 
which was far away from the arrival wave front. 

 

 
Fig. 10 The effect of the cavity truncation thickness ratio (TR=h0/b) on the response of the ground surface in the presence of a semi-sine 

shaped valley with SR=0.5 at dimensionless frequency 2.0 
 

7.5. Wave angle effect 

Although the effect of incident wave angle was 
specified on the antiplane seismic behavior of the surface 
somehow in all the above figures, Fig. 11 was plotted for 
precise view of this purpose. The effect of wave angle was 
demonstrated on the response patterns of the surface for 
two cases of the titled geometric ratios in the mentioned 

figure. As can be seen, the wave angle effect was large in 
the changes of response patterns. In all the cases, the 
maximum amplitude belonged to incident angle of 90 
degrees and was observed in the valley edge near the 
arrival wave front. Furthermore, the part of the valley 
which was away from the wave front experienced low 
fluctuations and little response changes. 
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Fig. 11 The effect of the wave angle (θ) on the normalized displacement amplitude of the ground surface in two cases of the model geometric 

parameters 
 

8. Conclusions 

The behavior of the ground surface was shown in the 
presence of a semi-sine shaped valley above an embedded 
truncated circular cavity due to obliquely propagating 
incident antiplane waves as the Ricker wavelets type. An 
extensive time-domain half-plane BEM formulation was 
considered for this numerical study. The accuracy and 
efficiency of the prepared algorithm in antiplane seismic 
analysis of combined topographic problems were 
investigated and verified with those of excellent analytical 
works. First, general pattern of the responses in the time 
and frequency domain was observed. Then, with 
considering four geometric ratios of the model such as 
shape ratio, depth ratio, location ratio and truncation ratio 
as well as incident wave angle, a parametric study was 
carried out. The obtained results were summarized as 
follows: 

1. The existence of valley decreased responses in 

case of vertically propagating waves compared to the 
smooth ground with a subsurface cavity. 

2. Increasing the depth of the cavity decreased its 
seismic isolation effect in the case of vertical incident 
waves. 

3. That side of the valley which was close to the 
cavity location experienced more fluctuations and another 
side converged rapidly to ground response without 
subsurface openings. 

4. Although varying the cavity section from full-
circle to semi-circle had significant influence on its 
surrounding stresses, the antiplane seismic response did 
not highly depend on truncation thickness ratio.  

5. In spite of the fact that vertical incident waves 
created critical states in the case of single hill or valley 
structures, the highest response amplitude in the presence 
of underground cavities observed in horizontally 
propagating incident waves. 

It is worth mentioning that, according to the purpose of 
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this paper which focused on the observation of the effect 
of model geometric parameters, the results were presented 
at a single frequency. Considering the frequency content 
can be also significant, which was not discussed in the 
present study. 

Whereas the model presented in this paper showed 
some advantages of the half-plane time domain BEM, it is 
obvious that the mentioned method had also some 
important limitations. Seismic analysis of non-
homogenous mediums with the half-plane BEM was not 
so straightforward. Besides, they could not be simply 
extended to important cases such as anisotropic and 
viscoelastic media. 
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