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1. Introduction

The geomechanical characterization of a soil deposit involves

both deterministic and statistical approaches. The correct

approach for this characterization consists of defining a trend,

expressed by a regression analysis, and the residual variability

of the geotechnical properties which is termed stochastic

heterogeneity. However, Baecher [1] emphasizes that the

distinction between trend and stochastic variation is not

inherent to the soil but to the modeler. The evaluation of

stochastic variations which can be seen as a convenient way to

describe the variability of a soil property has attracted extreme

attention of researchers for last three decades. This variation of

soil properties can be precisely described by three parameters:

mean, coefficient of variation and the scale of fluctuation. 

Since the first advent of the correlation concept and the

definition of the scale of fluctuation by Vanmarcke [2],

various techniques have been developed by subsequent

researchers for the identification of the correlation structure of

geotechnical data. Vanmarcke’s expeditive method [2], direct

integration of sample autocorrelation function [3],

autocorrelation model fitting [4], variance reduction function

[5, 6, 7] and Bartlett’s limit methods [8] are suggested

methods in literature; However there is no bias to any specific

method. Current study focuses on the calculation of the scale

of fluctuation in order to identify the correlation structure of

CPT data. Cone penetration profiles performed in sandy

materials adopted to evaluate the correlation structure of cone

tip resistance of sandy materials and to compare different

methods. In this way some inaccuracies raised by trend

removal techniques are pointed out and appropriate trend

model for sandy materials are recommended.

2. CPT data sets

Among the various ways of subsurface investigations, Cone

Penetration Tests are an especially useful and inexpensive

ways of evaluating soil profiles. Retrieving data continuously

with depth (with electronic ones) or at very close intervals

(with mechanical ones), the CPT is able to detect fine changes

in the stratigraphy and spatial variability of soil properties. Six

sets of CPT soundings are selected from different sites in

U.S.A., Iraq and Australia indicated by case number 1 to 6 in
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Table 1; also summarized the original name, site location,

number of data points for each sounding, Nd and sampling

interval in each case. It is evident that all the experiments are

carried out in sandy materials with 20 cm data intervals. Figure

Figure 1 shows the soil description for investigated sites. The

soil classification is conducted based on Eslami-Fellenius

classification chart [9] which is shown in Figure 2.

There are several technical problems embedded in the

evaluation of soil vertical variability using CPT data, but cone

bearing, qc profiles are usually preferred for processing. The

sleeve friction, fs is also measured during the tests, but this is

generally considered to be unreliable due to technical

drawbacks, e.g., sleeve wear [16]. At what follows, the cone

tip resistance from CPT data was chosen to evaluate stochastic

variation of soil properties and the correlation structure

identification in other words.
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Table 1. Summary of CPT soundings

Fig. 1. Soil profile based on CPT data; Cn1 to Cn6
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3. Spatial Soil Variability

The unique nature of soil and rock materials which are often

highly variable, even within a short distance, makes

geotechnical engineering much more an art than the other

disciplines within civil engineering. The variation of

properties from one location to another within a soil or rock

mass is termed spatial variability. During the last decades,

several models have been proposed to make explicit the

affecting factors on overall variability and magnitude of each

source of uncertainty. These models identify that the primary

sources of geotechnical variability are inherent soil variability,

measurement error and transformation uncertainty [17, 18, 19,

20]. Inherent soil variability is due to complex process of geo-

materials formation such as sedimentation, weathering, stress

history and time; Measurement error resulted from equipment,

procedural-operator and field effects while transformation

errors occur when fields or laboratory measurements are

transformed to design soil properties with empirical or other

correlation models. Although the inherent variability is

common in soil layer which is homogeneous, in terms of

composition, in majority of cases in geotechnical engineering,

one will encounter with soil strata with different lithological

origins. This type of variability called lithological

heterogeneity results from the formation of soil layers from

decomposition of different parental materials. So, along with

the inherent variability in natural alluvial deposits, there is

generally another source of variability manifested in the form

of soft/stiff layers embedded in a stiffer/softer media or the

inclusion of pockets of different lithology within a more

uniform soil mass, but this is excluded in this study.

Inherent variability in geotechnical properties can be

modeled by eq. (1) in which a depth dependent geotechnical

property, x is decomposed into the deterministic component, t

and the fluctuating component, w that totally represent the

inherent soil variability. Figure 3 shows schematically the

inherent and lithological variabilities where different layers

are resulted from lithological heterogeneity. 

x(z) = t(z) + w(z)           (1)

A rational means of quantifying inherent variability is to

model w(z) as a homogeneous (stationary) random function or

field [3]. This function is considered to be statistically

homogeneous if (i) the mean and variance of w do not change

with depth; and (ii) the correlation between the deviations at

two different depths is a function only of their separation

distance, rather than their absolute positions [19]. Fenton [5]

asserted that data detrending is performed essentially to obtain

a spatially independent fluctuating component, w(z). This

condition is desirable because the statistical procedures

employed are based on the assumption that data samples

consist of statistically independent and identically distributed

observations.

4. Correlation Structure

The first step in evaluation of the correlation structure of CPT

data lines in the estimation of the sample autocovariance

function and the sample autocorrelation functions of the

detrended data. Such functions may be estimated for stochastic

processes which are not homogenous as defined earlier but at

least weakly stationary. In CPT testing, values are read at

discrete, possibly constant, spatial interval, Δz. Hence, the

autocovariance and autocorrelation functions are also estimated

at a discrete number of points over the spatial interval Ld.

The sample autocovariance function may be obtained as an

unbiased estimate of the autocovariance function C
^ *(tj),

through eq. (2), where Nd is the total number of data points and

bias of an estimator is the difference between the estimator's

expected value and the true value of the parameter being

estimated while an estimator or decision rule with zero bias is

called unbiased.

(2)

As C
^ *(tj)  is an even function, the unbiased estimate should
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Fig. 2. Eslami-Fellenius soil profiling chart [9] Fig. 3. Inherent and lithological soil variability (data from 
Yen et al., 1989 [21])
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also be an even function; thus, the absolute value of the lags is

considered in the formula. C
^ *(tj), however, it is not exactly

unbiased, but, as shown by Priestley [22], is only

asymptotically unbiased, as the effect of estimating the mean

by the sample mean must be taken into account.

(3)

Parzen [23] suggested that a biased estimate of the

autocovariance function may be used instead:

(4)

While several authors have used unbiased autocorrelation

functions [24, 25, 26], the use of a biased estimator, C
^ *(tj) in

random field modeling of stochastic processes in the context

of geotechnical engineering is also warranted [5, 22] for the

following reasons: a) the expected error variance is slightly

smaller than that for the unbiased case; and b) the biased

estimator, when estimating covariances, leads to a tractable

nonnegative covariance matrix.

The sample covariance C
^*(tj) is estimated here for separation

distances τj=jΔz corresponding to j=1, 2, …, Nd/4, as suggested

by Box & Jenkins [27], where Δz is the sampling interval.

The biased estimate of the autocorrelation function, or

sample autocorrelation function, is given by:

(5)

It may easily be inferred from eq. (4) that C
^
(tj)  (covariance

at lag zero) is equal to the sample variance:

(6)

The autocorrelation function represents the correlation

coefficient between pairs of transformations of a stochastic

process W(t), ωi and ωi+j with source values zi and zi+j separated

by an interval of length ti=zi+j-zi in the index set. The

autocorrelation function may thus be interpreted as a measure of

the similarity between a realization of the stochastic process,

W(z), and the same realization shifted by tj units. As the residuals

of qc are zero-mean data vectors, eq. (5) can be rewritten as:

(7)

In the geotechnical literature various kinds of autocorrelation

models have been employed describing an autocorrelation

function [4, 8, 17, 26, 28, 29]. Some of these models are shown

in Table 2. According to Spry et al. [4], none of these models

are preferable on the basis of physical motivation. For

geotechnical data, it is not always easy to identify the

‘‘correct’’ form of the autocorrelation function. The reason is

that the empirical autocorrelation function might be: (i)

inaccurate because the available sample size is typically quite

small and (ii) incomplete as the estimated value from eq. (3) is

only accurate up to a maximum lag of less than 1/4 of the total

sample length [30]. However, it should be taken into account

that for most applications, the exact form of the ACF may not

be important [31]. The other three theoretical models shown in

Table 2 are less commonly used compared to the single

exponential model [20].

5. Scale of fluctuation

The scale of fluctuation (q) is an indicator of the extension of

the correlation structure. Within separation distances smaller

than the scale of fluctuation, the deviations from trend or the

residual components show relatively strong correlation, but as

the separation distance exceeds this value, little correlation

between the fluctuations in measurements is expected.

Different methods of calculation for the Scale of fluctuation of

geotechnical properties have been emerged since its first

introduction by Vanamrcke in 1977.

At what follows, different methods and approaches are first

introduced and then applied to some experimental real CPT data

so as to make a comparison between them and draw conclusions

about both the range of the scale of fluctuation of the residuals

of qc data and also the accuracy of different methods.

5.1. Vanmarcke’s expeditive method (VXP)

Vanmarcke in 1977 [2] introduced a simple definition of the

scale of fluctuation of stochastic processes for the first time and

proposed a simple method for approximating the scale of

fluctuation. In his opinion, the average distance between the

consecutive intersection of the overall profile and the trend line

of a given profile can be used to estimate this parameter. Eq. (8)

can be used to calculate the scale of fluctuation based on the

VXP method and Figure 4 schematically shows how to calculate

the average distance for use in this method. Based on this
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Table 2. Autocorrelation model and related definitions for the 
scale of fluctuation
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Fig. 4. Mean-crossing approximation for the estimation of the 
scale of fluctuation [10]
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method scale of fluctuation of cone tip resistance data set in Cn1

is equal with 0.54 meter for quadratic trend removed data.

(8)

5.2. Direct integration of sample autocorrelation function (SAI)

Following his preceding researches, in 1983, Vanmarcke [3]

proposed a new technique for calculation of the scale of

fluctuation of random processes. In this new procedure, the

sample autocorrelation function is first plotted versus lag

distance, and the area under this graph has been suggested as

the scale of fluctuation. Eq. (9) shows how to calculate the

scale of fluctuation from SAI method. In this relation ρ is the

estimated sample autocorrelation function and τ is the

separation distance between two measurements.

(9)

This method is a non-parametric approach, although it

assumes that the scale of fluctuation is finite and that the

correlation function is monotonic. As the scale of fluctuation is

not well defined for oscillatory correlation functions, the area

is usually taken to be the area up to which the sample

autocorrelation first becomes negative [32]. After substituting

the detrended data, w into eq. (7), the sample ACF is obtained

and the area under this function is an indicator of the scale of

fluctuation of CPT residuals. The calculated scale of

fluctuation for the CPT data set in Cn1 is 0.49 m for quadratic

trend removed data. Figure 5 provides a schematic

representation of the SAI method.

5.3. Autocorrelation model fitting (AMF)

Curve fitting or regression technique attempt to find

functions that best describe the relationship among variables,

namely ACF and the lag distance, t in this case. In effect, they

attempt to build mathematical models of the correlation data

set. After fitting the autocorrelation data with models

introduced in Table 2, goodness of fit can be evaluated for

different models so as to find the best one. However, as is

common in statistical literature, the term goodness of fit is

used in several senses, least square fitting, minimum

uncertainty and the ability to explain a high proportion of the

variability in the data are among all. A simple model that is

common and easy to interpret might outweigh to other

available models.

Single exponential model as a widely used model was

selected in this study and the least squares error regression

analysis was employed by applying linear and quadratic trend

removal schemes as shown in Figure 6. For Cn1 CPT data set

the scale of fluctuation was calculated 0.5 and 0.46 m for

linear and quadratic trend removal respectively, while in both

cases sample autocorrelation function inherits 0.8 m zero cut

off values. 

5.4. Variance reduction function (VRF)

The variance function introduced in eq. (10) measures the

reduction in the variance of the moving average of a random

process with the increase of the number of sequential random

numbers included in the moving average, was introduced by

Vanmarcke [3]. The variance reduction function (VRF) may be

used to estimate the scale of fluctuation of the random process,

as the rate at which the function decreases with increasing

averaging size may be conceptually related to the spatial

correlation structure as proved by Fenton [5] for 1D

continuous case.

(10)

Several studies [6, 7, 33, 34] have employed the VRF

procedure to estimate the scale of fluctuation of cone bearing

values. Such procedure is based on the hypothesis that, at large

separation distances, the product of the variance reduction

function and the separation distance approaches the scale of

fluctuation:

Γn (τ).τ=θ                                                                      (11) 

A practical variant of the Vanmarcke’s procedure, suggested

by Wickremesinghe and Campanella [6], is to take the scale of

fluctuation at the peak of a function, named by Cafaro and
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Fig. 5. Application of the SAI technique for the estimation of the 
scale of fluctuation for Cn1 CPT data set

Fig. 6. Scale of fluctuation of Cn1 cone tip resistance by AMF
method
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Cherubini [7] as ‘‘fluctuation function’’ which reaches a

maximum with increasing the lag distance, which is the

spacing size in other words. The fluctuation function is defined

as follows:

Fluctuation function=(variance function)×(lag distance)   (12)

As defined earlier the variance function is the ratio of the

variance of moving average series of degree n to the 

variance of the original data; if the sample spacing is d, the

degree n will be equal to (τ/d)+1, where τ=the lag distance.

The variance function basically describes the decay of the

variance due to a process of spatial averaging. For CPT 

data the calculation concerns residuals due to the presence of

trend.

Jones et al [35] recommended calculating the scale of

fluctuation of a random process based on Wickremesinghe and

Chamapnella’s proposed stepwise method as follow:

1. Calculate the variance for the series of data; this is the

reference variance, sr;

2. Smooth the series of data by applying a moving average

window of length n and substitute the original data value with

the new smoothed value, xk
* (e.g., for a windowsize, n = 3, xk

*

= (xk-1 + xk + xk+1)/n);

3. Calculate the variance for the smoothed data: this is 

the windowed variance, sn and will be lower than sr

due to cancellation of fluctuations due to spatial 

averaging [6];

4. Normalize the windowed variance by the reference

variance and multiply by the window length to obtain,

SOF=(sk /sr)× n;

5. Repeat Steps 2 – 4 incrementing the window until the

smoothing window is greater than about half the length of the

data series;

6. Plot out the SOF as a function of window length;

7. Observe the behavior of the curve and take the first peak

value as an estimate of the correlation length or scale of

fluctuation, q.

Seven steps, recommended by Jones et al. are applied to the

CPT residuals off Cn1 data set and as seen in Figure 6, peak

value which is assumed to represent the scale of fluctuation of

residuals is 0.36 m.

5.5. Bartlett’s limit method (BLM)

Jaksa [8] in a research on stiff clays observed that the scale

of fluctuation of cone tip resistance can be estimated relatively

simply by evaluating Bartlett’s distance, which is the

correlation distance defined by time series analysis. It is

calculated by determining the lag at which the sample ACF

first intersects Bartlett’s approximation or limits, as given in

eq. (12). Such method was proved computationally very

efficient; however, it remained to be demonstrated whether

such strong correlation would be observed in other soil types.

Strength of this method of estimation of the scale of

fluctuation, as observed by Jaksa [8], is the insensitivity to

measurement interval [32]. For instance, variation of ACF

with lag distance for data of Cn1 is drawn in Figure 8. This

curve intersects Bartlett’s limit in distance of 0.37 m which is

assumed to be the scale of fluctuation of this data. 

(13)

6. Trend removal models

Prior to evaluation of the correlation structure of cone tip

resistance of CPT data, deterministic trend should be removed

to access to the stationary data. Trends are low-order

polynomial function no higher than a quadratic, obtained by

regressing the cone tip resistance using ordinary least square

method [25, 36, 37] which is used for estimating the unknown

parameters in a linear regression model. This method

minimizes the sum of squared vertical distances between the

observed responses in the dataset, and the responses predicted

by the linear approximation. The OLS method is generally

used to solve a set of linear equations having more equations

than unknown variables. Since there are more equations than

variables, the solution will not be exactly correct for each

equation; rather, the process minimizes the sum of the squares

of the residual errors. 

According to Li [38] an alternative technique based on

generalized least squares (GLS) is more consistent with

spatial variability analyses.  In the GLS method, the least-

squares method is often used to solve a set of non-linear

�
� �
� �

��
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Fig. 7. Scale of fluctuation of Cn1 cone tip resistance by VRF
procedure Fig. 8. Sample autocorrelation function and Bartlett’s limit 
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equations that have been linearized using a first-order Taylor-

series expansion. Solving non-linear equations is an iterative

process using Newton’s method. The speed of convergence is

dependent on the quality of an initial guess for the solution.

The non-linear least-squares method is often referred to as a

bundle adjustment since all of the values of an initial guess of

the solution are modified together (adjusted in a bundle). This

technique is also occasionally referred to as the Gauss-Newton

method. However, Ripley [39] asserted that trends coming

from OLS and GLS should only differ slightly. 

As stated by Baecher [40] the selection of a particular trend

function is a decision on how much of the spatial variability in

the measurements is treated as a deterministic function of

space and how much is treated statistically and modeled as

random processes. Figure 9 shows cone tip resistance data for

Cn1 and cn3 with their linear and quadratic regressed trends

using OLS procedure. As seen in this figure, for Cn1, linear

and quadratic trend are almost identical while for Cn3, two

types of regressed trends are very different. The quadratic

deterministic trend may be due to suction and capillary effect

for fine sand upper crust layer in which strength and stiffness

of this crust is higher than that of material immediately below

it. Notwithstanding the fact that there is no unique trend in

different soils, the deterministic variation of qc profiles with

depth in natural alluviums is assumed by authors to bear a

quadratic trend which will render family fairly similar results

in case linear trend prevails.  

7. Comparison of methods

Tables 3 and 4 show the estimated values for the scale of

fluctuation of CPT residual components using the VXP, SAI,

AMF, BLM and VRF methods while both linear and quadratic

trend models have been considered to acquire residuals off

CPT data. First observation from these tables is that trend

removal model has a significant impact on the estimation of

the scale of fluctuation of qc profiles. As plotted in Figure 10,

the relative difference in estimated scale of fluctuation

between linear and quadratic trend removal models varies

between 4 and 101%. The least error belongs to Cn1 which is

easily confirmed by looking into Figure 9(a), too. It is evident

International Journal of Civil Engineering, Transaction B: Geotechnical Engineering Vol. 11, No. 1, May 2013 35

Fig. 9. Different trend models; a) Cn1; b) Cn3 
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Table 3. Comparison of the scales of fluctuation of cone tip
resistance adopting linear trend removal

Fig. 10. Effect of trend removal model on mean values of the 
scale of fluctuation 
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that quadratic trend removed in all cases renders lower values

for the scale of fluctuation. This can be explained by the fact

that higher order polynomials extract the deterministic

behavior more efficiently and the residuals will show weaker

correlation structure. Phoon et al. (2003) [26] examined the

resulted scale of fluctuation trending off the CPT data after

removing linear and quadratic trend and asserted that linear

trend should be used if the difference is acceptably small;

however in evaluated cases, quadratic trend removal model

was chosen due to the spread range of error.

Another observation from these tables is that the mean

estimated scales of fluctuation vary from 0.44 to 2m. This lies

exactly in the previously published range for the scale of

fluctuation of qc within sandy or clayey soils indicated to be

0.1 - 2.2 m by Phoon et al. [19]. Coefficient of variation of

calculated scales of fluctuation from different procedures

provides a qualitative indication of the closeness of various

estimates. The results provided in Table 4 with quadratic trend

removal show that the COV of the scales of fluctuation

estimated from different procedures ranges between 12 and

27% for different cases. This indicates that employing

different approaches will not lead to the same estimation for

the scale of fluctuation of random process. However, if one

excludes VXP and VRF procedures which are actually less

common in geostatistics, the range for COV will dramatically

decrease to 3-14%. This finding is visually confirmed by

referring to Figure 11.

8. Conclusion

Cone penetration test is one of the most useful and versatile

in-situ tests employed to determine the spatial variability of

sandy soils. CPT data from six different sites, all representing

sandy deposits were selected in order to study the stochastic

properties of them. In this regard, five different established

methods i.e. VXP, SAI, AMF, BLM and VRF were adopted to

investigate the correlation structure of the CPT profiles. Scale

of the fluctuation was calculated as the key parameter to

evaluate the correlation behavior of CPT data using the above

mentioned procedures.

Trend removal technique was shown to have a critical effect

on the scale of fluctuation of the CPT residuals. It was

emphasized that quadratic trend models will render more

realistic correlation properties of CPT residuals due to the

better regression of the deterministic component of the CPT

profile.

The mean estimated scale of fluctuation acquired from

different procedures proved to vary from 0.44-2 meter which

lies within the available range in the literature.

Another observation of this study is regarding the

comparison of different procedures to calculate the scale of

fluctuation of CPT residuals. It was shown that the coefficient

of variation of the estimated values ranges from 12 to 27% and

the COVq decreases if VXP and VRF which are simple

approximation of the scale of fluctuation are excluded. This

means that other three methods namely SAI, AMF and BLM

give more consistent results.
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