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Abstract 

Incremental launching is a widespread bridge erection technique which may offer many advantages for bridge designers. 

Since internal forces of deck vary perpetually during construction stages, simulation and modeling of the bridge behavior, for 

each step of launching, are tedious and time consuming tasks. The problem becomes much more complicated in construction 

progression. Considering other load cases such as support settlements or temperature effects makes the problem more intricate. 

Therefore, modeling of construction stages entails a reliable, simple, economical and fast algorithmic solution. In this paper, a 

new Finite Element (FE) model for study on static behavior of bridges during launching is presented. Also a simple method is 

introduced to normalize all quantities in the problem. The new FE model eliminates many limitations of some previous models. To 

exemplify, the present model is capable to simulate all the stages of launching, yet some conventional models of launching are 

insufficient for them. The problem roots from the main assumptions considered to develop these models. Nevertheless, by using 

the results of the present FE model, some solutions are presented to improve accuracy of the conventional models for the initial 

stages. It is shown that first span of the bridge plays a very important role for initial stages; it was eliminated in most researches. 

Also a new simple model is developed named as "semi infinite beam" model. By using the developed model with a simple 

optimization approach, some optimal values for launching nose specifications are obtained. The study may be suitable for 

practical usages and also useful for optimizing the nose-deck system of incrementally launched bridges. 

Keywords: Incremental bridge launching, Finite element method, Nose – deck system, Optimization, Semi infinite beam model. 

 

1. Introduction 

Bridge piers are constructed first in incremental bridge 

launching method and after that, deck segments are pushed 

forward above them until they reach their final positions 

(Fig. 1). Constructing, curing, pre-stressing and pushing 

the segments are done on a construction platform close to 

bridge abutments [2, 3]. These segments may be over a 

half- length of the bridge spans; therefore, number of 

structural weak points in junctions is reduced 

considerably. Some other  advantages such as high speed 

working due to eliminating casting molds, reducing 

manpower and constructional costs, proper and accurate 

supervisions, no needing to block obstacles under the 

bridge during launching and minimizing the destruction of 

the environment in construction location, make 

incremental launching more competitive in comparison to 

other erection techniques [4-6]. Temporary tensions 

occurred during construction stages may be different and 

much more critical than those in service life. 
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Therefore, an appropriate method should be used to 

reduce these forces and thus avoid wasting the advantages 

of the method by using overdesigned structural members. 

Different methods have so far been introduced by engineers 

and researchers for this purpose. Among them, using a nose-

deck system, owing to its simplicity and efficiency, has been 

known as the standard method. In this sense, a light nose 

girder, attached in front of the deck, is used to reduce the 

cantilever moment of deck at its end [2]. Nose specifications 

have significant effects on the nose-deck interaction. 

Researchers have focused on two main categories of 

study for incremental bridge launching. The first category is 

related to study on the nose-deck interaction, and it pertains 

to find some proper values for nose specifications. To this 

end, a simple model of the nose-deck system is required. 

Marchetti used the elastic load analyze method to present a 

simplified model for launched bridges [7]. This model 

became as a prototype model for other researches. For 

instance, Rosignoli studied on this model to investigate the 

nose-deck system and find optimal specifications of nose 

via a try and error method [4]. Also Fontan et al. discussed 

the optimal ranges of nose specifications by some 

mathematical optimization approaches via Marchetti’s 

model [8]. 
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Fig. 1 Incremental bridge launching [1] 

 

The second category is related to developing proper 

methods for simulating stages of construction during 

launching. Analyzing movement of a superstructure over 

fixed piers needs to consider different schemes for 

arrangement of the piers. Nevertheless, the best method is the 

fastest one which works with repetitive algorithms and can be 

easily implemented in computer programming. The method 

should provide most information in the least possible time. 

Rosignoli simulated the incremental bridge launching with 

Reduced Transfer Matrix (RTM) method [9]. Sasmal et al. 

presented Transient Transfer Matrix (TTM) method for 

structural analysis of launched bridges [10]. Sasmal and 

Ramanjaneyulu developed this method for pre-stressed 

concrete bridges [11]. Arici and Granata extended the TTM 

method to study construction stages of curved box girder 

bridges with constant radius [12]. RTM and TTM methods 

are generally inefficient for parametric study of nose-deck 

interaction. Therefore, majority of the researchers have shown 

their results only for some case studies. 

The present study uses finite element method to model 

incremental launching for both aforementioned categories. It 

will be shown that not only does this method have the 

advantages of the RTM and TTM methods but also it is 

much more systematic and convenient for computer 

programming. Also a simple method is used to normalize all 

the parameters involved in the model. An extensive study is 

done along with considering some new factors such as shear 

strain and temperature gradient effects; they were eliminated 

in some previous studies. It will be shown that studying on 

the rotation of deck sections leads the analyzer to evaluate 

the accuracy of Marchetti’s model easily. Therefore, some 

solutions are suggested to improve the accuracy of this 

conventional model for initial stages of launching as well as 

forthcoming ones. The effects of first span length and 

platform of the construction, on the structural behavior of 

the bridge, are included. Some solutions are suggested to 

optimize the bridge performance by taking these two factors 

in to account. Likewise, a new simplified model is 

developed named as “semi-infinite beam” model. The 

model is useful for parametric studies on the nose-deck 

interaction. In the final analysis, a simple mathematical 

approach is investigated to find some proper ranges for 

optimal design of the nose girders. 

2. Assumptions and Definitions of the Parameters 

In this study some assumptions are considered for 

generating the finite element model. This section gives 

some explanations about assumptions and definitions used 

here. 

2. 1. Arrangement scheme of piers 

Various schemes of pier arrangement can be 

considered in the model. But it is more reasonable to set 

the arrangement of piers based on optimum static 

performance of the bridge in service time. Constructional 

stresses can be controlled by other practices such as using 

a light nose girder attached in front of deck, pre-stressing 

or using some temporary piers. In the present study, the 

bridge structure consists of some identical mid spans and 

shorter end ones. Most bridges with continuous system 

were constructed according to this pattern around the 

world due to its structural and architectural benefits. 

2. 2. Definition of stage, station and phase 

The nose tip passes through all spans during launching 

and the number of launching spans equals the launching 

stage. The number of piers behind the launching stage is 

defined as the station. For each stage of launching two 

different phases can be considered. Phase one refers to the 

position that nose tip has not reached the next pier and the 

nose-deck system has a cantilever scheme. This phase lasts 

till nose tip reaches the next pier. Phase two starts after 

that and lasts till nose girder passes the pier completely. 

Definitions of stage, station and phase are shown in Fig. 2. 

 

 
Fig. 2 Definition of stage, station and phase 
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2. 3. Specifications of launching nose 

Although majority of noses are constructed with 

tapered sections, in this study it is assumed that the nose 

girder is prismatic. Using mean values of the tapered nose 

specifications for an equivalent prismatic nose will 

introduce a very small error (less than 2%) [13, 14]; 

therefore, this assumption is accurate enough. Flexural 

stiffness, dead load, length and height of nose are defined 

by 
n nE I , nq , 

nL  and 
nH , respectively. 

2. 4. Normalizing the formulations 

In this study, three main specifications of deck 

including flexural stiffness (
D DE I ), dead load ( Dq ) and 

mid spans length ( DL ) have been considered as the 

measurement scales i.e. their values are assumed to be 

unit. Any other quantity in the problem can be stated 

normalized to these values. Therefore, nL , nq , n nE I and 

nH , in normalized dimensionless formats, are presented 

by four dimensionless parameters as L  (ratio of nose 

length to mid span length), q  (ratio of nose load to deck 

load), EI (ratio of nose flexural stiffness to deck flexural 

stiffness) and HN  (ratio of nose section height to mid 

span length). Such an approach leads to expressing the 

unknown forces in a dimensionless format as a coefficient 

of deck characteristics. For instance, internal moment for 

each section of deck is obtained as a coefficient of 
2

DDLq . 

Length of end spans and deck height, in the normalized 

format, are denoted by 1  and HD , respectively. This 

method is so beneficiary and useful for parametric studies 

on the nose-deck interaction. 

2. 5. Deck specifications  

It is assumed that the bridge is straight and without any 

horizontal curvilinear. In most cases, especially for 

highway bridges, adoption of box girders is usual. Since 

box girders have high torsional rigidity, the torsional 

moment effect is not critical for these bridges during 

launching. Therefore, the straight beam theory can be 

sufficient [9]. It is also assumed that the mechanical 

specifications of deck including flexural rigidity and dead 

load are constant along its length.  
Since all the deck sections periodically experience 

negative and positive moments during launching, it is 

reasonable to use a central prestressing scheme. This 

central prestressing will not affect bending moment of 

deck; hence the launching internal forces can be calculated 

irrespective to this prestressing. In practice, after the 

launching time, this central prestressing will be replaced 

with an appropriate parabolic pre-stressing scheme. 

Pre-stressed composite bridges may experience 

considerable deformations due to shear slip of the shear 

studs located between concrete slab and steel girders [2, 

15, 16]. However, the effect of shear slip is not considered 

and only shear strain effect is considered here. 

2. 6. Modeling the construction platform 

During launching, one or two deck segments are kept 

on the construction platform usually. When nose reaches 

piers, axial stiffness of platform can be neglected in 

comparison to very high axial stiffness of the bridge piers. 

Therefore, platform segments have a cantilever behavior 

during lunching, and the effects of segments on the 

platform can be replaced with a concentrated shear force 

and a moment on the first station. The average normalized 

length of segments on the platform is denoted by 0 . 

3. Finite Element Formulation 

It is well-understood that the axial stiffness of the 

bridge deck is high and its axial force is relatively small; 

therefore, axial displacements are negligible and thus usual 

beam elements are sufficient to model the continuous deck 

of the bridge; for these elements axial degree of freedom is 

not considered.  

In this section, bold letters refer to matrix variables. 

For a beam element, shown in Fig. 3, nodal forces vector, 

r, and displacements vector, d, for a generic element are 

defined as follow: 

 

T

ji rrr  ; 
T

i rr 21r  ,  
T

j rr 43r  (1) 

T

i jd d d ; 
T

i dd 21d , 
T

j dd 43d  (2) 

 

 
Fig. 3 The Beam element 

 

The finite element formulation for a beam element, in 

the view of stiffness method, can be written as: 

 

dkrr . f
  ,   

tqf rrr   (3) 

 

where k  is the element stiffness matrix and fr  is 

summation of qr (equivalent element nodal forces vector 

due to external distributed loads) and tr  (equivalent 

element nodal forces vector due to thermal loads). The 

element stiffness matrix, by assuming all the properties to 

be constant along the element, is as follows: 
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E and G  are the modulus of elasticity and the shear 

modulus of the material, I  and A  are the moment of 

inertia and area of the section, L  is the length of the 

element and   is the shear constant (ratio of the 

maximum shear stress to the average shear stress at the 

section). Considering a uniform distributed load on the 

element and a linear thermal gradient within the element 

section, qr  and tr  vectors can be written as: 

 
T

q

qLqLqLqL

122122

22

r  (7) 

TT
t

H

TEI
1010

..






r  (8) 

 

where, q , T , H and T  are the uniform 

distributed load on the element per unit length, the 

difference between the temperature at top and bottom of 

the section, height of the section and the thermal 

expansion coefficient, respectively. 

As it was described before, the characteristics of the 

structure should be written in a dimensionless format by 

normalizing them on the basis of the deck specifications. 

Therefore, the values of the parameters in the stiffness 

matrix and load vectors should be written in a normalized 

format. 

Shear stiffness is only considered for the concrete deck 

section, and it is neglected for the nose girder. The GA

term, which shows the effects of shear deformation in the 

stiffness matrix, can be written in a normalized 

dimensionless format as:  

 

2. rs
GA




 ; 
D

gyr
r

L

r
 ,  2 1s     (9) 

 

gyrr  and   are the radius of gyration of the deck 

section and the Poisson’s ratio, respectively. To elucidate, 

the stiffness matrix of first element (first bridge span), in a 

parametric form, using equations (4-6), can be written as 

follows: 

 

To sum up, analysis of the whole structure can be 

performed by solving the following system of 

equations: 

 

K.DRR  f  (11) 

 

Where K  is the global stiffness matrix, R  is the 

global nodal forces vector and fR  is the global 

equivalent nodal forces vector obtained by superposition 

of external distributed loads and thermal loads, and D  is 

the global nodal displacement vector. Support settlements 

can be directly taken into account; it suffice to replace 

their normalized values in the appropriate row of D . 

When numbering of the elements is started from the 

first span of the bridge and continued one by one to the 

last element, K  and fR  can be assembled as: 

According to equation (12), the global stiffness 

matrix is obtained banded and the calculation time of 

solving equation (11) can be reduced significantly due 

to narrow band width of K . A banded stiffness matrix 

(which is the result of appropriate element numbering) 

compensates its higher dimensions in comparison to 

matrices used in RTM and TTM methods. Moreover, 

the RTM and TTM methods require repetitive 

computations and satisfying boundary conditions of 

each element in each step, while in the FE method 

boundary conditions are directly imposed and the 

solution is thoroughly summarized to build the global 

stiffness matrix and the nodal forces vectors. As a 

repercussion, the FE method may be more suitable for 

systematic computer analysis. 
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4. Nose-Deck Interaction 

In contrary to simplified conventional model that 

assumes infinite number of spans behind a station, the 

present FE model does not have this limitation. Fig. 4 shows 

moment variation of fifteenth station for different values of 

EI  with 
L  and 

q  as 0.5 and 0.1, respectively. This 

station is selected because it can represent stations with 

infinite number of spans behind them. Nose end distance 

from the under study station is denoted by   that is 

normalized based on the length of mid spans. 

According to Fig. 4, in phase 1 (zone A) internal 

moment of this section is independent of the nose flexural 

stiffness; therefore, curves are completely overlapped in 

this region. In contrary to phase 1, in phase 2 (zone B), the 

moment is dependent on 
EI  significantly. 

Optimum specifications of the nose should be chosen 

in a manner that the maximum moment of deck in the 

foremost pier in phases 1 and 2 of launching, denoted by 

1M  and 
2M  in Fig. 4, approaches to -1/12 as much as 

possible [8]. Moreover, not any maximum moment should 

emerge along the deck that exceeds that of 
1M  and 

2M  

(marked with triangles). As shown in Fig. 4, choosing a 

sufficiently large value for EI  may control the latter 

criterion. It should be noted that the station moment in 

zone C (moment of second station before launching span) 

is also dependent on the nose specifications. An optimal 

design for nose specifications must prevent the maximum 

moment of zone C to be more critical than maximum 

moment of zones A and B. More complexities arise out of 

optimization of nose specifications due to interdependency 

of the nose characteristics. Therefore, an exact and 

effective optimization requires mathematical approaches 

along with difficult engineering assessments. Fontan et al. 

completely discussed this problem in a mathematical point 

of view [8]. However, in Section 7, a brief investigation 

into optimization of the nose specification via a simple and 

insightful approach will be presented. 
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Fig. 4 Moment variation of fifteenth station for βL=0.5, βq=0.1 and different values of βEI 
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Fig. 5 shows the variation of fifteenth station moment 

in fifteenth stage for different values of L  and constant 

values of EI  and q . Also Fig. 6 shows the variation of 

this station for different values of q  and constant values 

of EI  and L . According to these figures, increscent of 

q  has an identical effect with decreasing of L  on 

performance of the system. It can be concluded that larger 

values for q  require larger values for length of the nose 

girder to achieve the equality of 1M  and 2M  (Fig. 4). 

Hence, for each value of q  there is a proper value for 

L  which causes this matter. Some compatible values for 

nose specifications which make its performance 

approximately optimum during launching are as 

0.65L  , 0.1q  and 0.2EI  . It should be 

remarked here that these values are rather used in practice, 

and they have been suggested by some of the researchers 

in the literature [2, 5]. Fig. 7 shows the fifteenth station 

moment obtained by these well-known values of nose 

specifications. It should be noted that the yellow mark in 

the figure indicates the maximum moment of station for 

fifteenth stage of launching. Hereinafter, these values are 

considered for nose specifications to study on the effect of 

other parameters that governs the nose-deck interaction. 
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Fig. 5 Variation of fifteenth station moment in fifteenth stage for βEI =0.15, βq=0.1 and different values of βL 
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Fig. 7 Variation of fifteenth station moment for optimum nose specifications 
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Fig. 8 Variation of fifteenth station moment with different values of temperature gradient 

 

In order to show the temperature gradient effects on 

performance of the nose-deck system, variation of 

fifteenth station moment with different values of 

temperature gradient is illustrated in Fig. 8. HN and 

HD  are considered to be 1/20 and 1/10, respectively. The 

coefficients of thermal expansion for concrete deck and 

steel nose girder are assumed to be 11.3×10
-6

 1/C˚ and 

8.5×10
-6

 1/C˚, respectively. This figure indicates that the 

effect of temperature gradient on variation of station 

moment is not significant in general. Moreover, it can be 

concluded that negative gradient (higher temperature in 

top of the section) increases the station moment and makes 

the condition more critical. To study on the shear strain 

deformation effect on the nose-deck interaction, variation 

of fifteenth station moment regarding this effect is shown 

in Fig. 9. The moment station variation is plotted once 

with shear strain effects neglected ( 0s  ) and once with 

respect to this effect for 3.2s   and different values of 

r . According to this figure, it can be concluded, the 

shear strain effect on the station moment for values of r  

less than 0.02 is negligible. Generally, for composite box 

girder sections, r  is less than 0.02 (see [16]) and thus 

shear strain effect is negligible in most practical cases. It 

should be noted that in spite of shear strain effect, shear 

slip effect of studs for composite bridges may be more 

significant as mentioned before. 
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Fig. 9 Variation of fifteenth station moment considering shear strain effect 

 

 
Fig. 10 Assumption of the conventional simplified model  

 

5. Study on the Conventional Simplified Model 

As discussed earlier, when there are a large number of 

spans behind a station, structural behavior of the bridge, at 

the section of this station, is identical to a continuous beam 

with infinite number of spans. Fig. 10 shows a continuous 

deck during launching with infinite spans behind the 

launching stage. Marchetti proposed the rotation of a 

generic section  , for a launching deck with infinite 

number of spans as follows [7]: 

 

21 aMa  ; 

1

1
0.288675

1

2 3 DD D D

a
E E II

  , 

3 3

2 0.024
24 3

056D D D D

D DD D

q

I

L q L
a

E EI
   

(14) 

 

where M is the station moment, 1a  and 2a  are 

constant coefficients dependant on the deck specifications 

only. By using this relation for any station of deck, the 

problem can be reduced to analyze a continuous beam with 

lower degrees of indeterminacy. In this section, the 

precision of
 
this formula is examined for each stage of 

launching to find out when continuous bridge reaches its 

infinite scheme.  

Fig. 11 illustrates the variation of internal moment and 

rotation of stations 2 to 6. In this figure it is assumed that 

all spans are identical and 0  is zero. Also the behavior of 

fifteenth station is shown in this figure. The superscript (*) 

implies that the rotation is obtained by equation (14). The 

results obtained by Marchetti’s model are included in the 

figure. 

As shown, stations 2 to 6 may be more critical than 

farther stations (for example fifteenth station). Accurate 

rotations of these stations are different from results given 

by equation (14); especially for stations 2 to 4. But rotation 

of station 5 has good matching with the results of this 

equation and fifteenth station behavior. For station 6 and 

next stations, results obtained from equation (14) 

completely agree with the results obtained from the FE 

model. This conclusion is valid for any nose 

specifications. In a nutshell, (14) is valid only when there 

are at least 5 spans behind the station. 

On the other hand, for fourth station and the next ones 

when nose tip is 2.5 to 3 spans farther, the station rotation 

nearly tends to zero and remains constant i.e. treats as a 

fixed support. So it can be concluded that existence of at 

least three stations behind and farther a station is required 

to approximately assume the station as a fixed support. 

Therefore, instead of analyzing the whole structure, a new 

simplified model named as "semi infinite beam" model can 

be analyzed (Fig. 12). It should be noted that this model 

may not be useful when there are not enough spans (at 

least 3 spans) behind the fixed support; it is the problem 

for launching of the initial stages. 
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Fig. 11 Variations of moment and rotation for stations 2 to 6 

 

 

 [
 D

O
I:

 1
0.

22
06

8/
IJ

C
E

.1
3.

1.
11

2 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                             9 / 14

http://dx.doi.org/10.22068/IJCE.13.1.112
https://www.iust.ac.ir/ijce/article-1-1077-en.html


A. Shojaei, H. Tajmir Riahi, M. Hirmand 121 

 

 
Fig. 12 The semi infinite beam model 

 

  
(a) (b) 

Fig. 13 Scenario of internal bending moment of eighth stage; a) phase 1, b) phase 2 

 

Table 1 Appropriate values of a1 and a2 for different values of β1 and β0 

β1 1 0.9 0.85 0.8 

β0 0 0.5 0.75 0 0.5 0.75 0 0.5 0.75 0 0.5 0.75 

St.2 
a1 0.3325 0.3337 0.3334 0.3 0.3 0.3 0.2834 0.2833 0.2834 0.2667 0.2666 0.2667 

a2 0.0416 0.0396 0.037 0.0304 0.0285 0.0262 0.0256 0.0238 0.0216 0.0213 0.0197 0.0176 

St.3 
a1 0.2916 0.2917 0.2917 0.2895 0.2895 0.2895 0.2883 0.2883 0.2883 0.287 0.287 0.287 

a2 0.0208 0.0214 0.022 0.0227 0.0232 0.0238 0.0235 0.024 0.0246 0.0242 0.0246 0.0252 

 

6. Study on the Initial Stages of Launching 

Moments of some stations in the initial stages of 

launching are more critical than farther stations. The 

problem lies in the fact that the bridge has not reached to 

its infinite continuous scheme yet. In this section the issue 

is discussed and some solutions are presented to reduce 

these station moments. To overcome the problem of 

critical conditions in the initial stages of launching, two 

main solutions are suggested:  

1. Keeping some segments of the deck on the 

construction platform during launching of the initial 

stages. Generally, in practical projects a piece of 

superstructure, over half size of a mid span (one deck 

segment), is kept on the platform for each stage of 

launching. 

2. Increasing bending stiffness of second station by 

shortening the length of the first span. 

As will be concluded later, not only does second 

solution reduce temporary construction tensions but also it 

is suitable to optimize the static behavior of the bridge 

after construction in service time.  

Fig. 13 shows the scenario of internal bending moment 

of superstructure parts during launching of phases one and 

two of eighth stage as an example. Moments are just 

shown for first four spans. Temperature effects, support 

settlements, shear deformation and platform loads are 

neglected and all spans are considered to be identical. 

Bridge spans act like fixed ends beams and moment at 

their supports and midpoints are approximately –1/12 and 

+1/24, respectively, except for some initial spans. This 

matter agrees with the results obtained in the previous 

sections. 

In construction process, first span posses the maximum 

positive and negative bending moment (Fig. 13). By 

reducing length of the first span appropriately, maximum 

positive and negative moments of the first span can be 

reduced to be closer to that of other spans.  

A numerical study is done for station two in the second 

stage and also for station three in the third stage of 

launching (Table. 1). In this table, values of 1a  and 2a

(Defined by equation (14)) for different values of 1  and 

0  are given. The presented coefficients can be replaced 

in equation (14) to modify it for the initial stations. The 

bolded values of 1  and 0  ( 1 0.85   and 0 0.5  ) 

are suitable to make initial stations behavior close to 

farther ones; because 1a  and 2a  are nearly equal to the 

values given by equation (14). It should be noted that 1a  
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and 2a  are completely independent of geometrical and 

mechanical specifications of the nose. 

Fig. 14 illustrates moment variation of station 2 in the 

second stage of launching with optimum values of 1  and 

0  versus its moment variation with 1  and 0  as 1 and 

0, respectively. This figure indicates that by choosing 

optimum values for 1  and 0 , the moment variation of 

station 2 in second stage of launching completely 

conforms to the moment variation of station 15 in fifteenth 

stage.  

Fig. 15 shows internal moment diagram of deck in an 

instant for launching of eighth stage (when nose tip 

distance from the first pier is 9.5 in normalized format) for 

1  equal to 1 and 0.85. Again, moments are just shown 

for first four spans. It can be concluded that not only does 

choosing optimum values for 1  and 0  optimize the 

launching moment of initial stations in their launching 

stages but also balances moment of different stations 

during all the stages of launching. 

Similar moment diagram can be obtained when 

launching of bridge will be finished and the construction 

platform will be removed ( 0 0  ); moment diagram of 

this position resembles that of service time. Therefore, it 

can be concluded that the suggested value for 1  can 

optimize the static performance of bridge in service time, 

as well. 
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Fig. 14 Moment variation of the second station in second stage of launching with optimum values of β1 and β0 

 

 

  

(a) (b) 
 

Fig. 15 Moment diagram of deck in eighth stage; a) β1=0.85, b) β1=1 
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7. Optimum Design of Nose Girder 

This section leads to a comprehensive study on the 

developed semi infinite beam model. It should be noted 

that the main point to introduce the semi infinite beam 

model is its efficiency for parametric study on the nose-

deck interaction through a simple structure with lower 

degrees of indeterminacy. It is intuitively obvious that the 

beam model, shown in Fig. 12, can be analyzed 

symbolically through different structural analysis 

techniques such as the theory of virtual work or the slope 

deflection method. In the previous section some remedies 

were suggested to preserve the advantages of a designed 

nose for all spans of launching. All in all, to give more 

insight into the realm of nose girder optimization, this 

developed simple model is applied along with considering 

a simple feasible directions method technique for 

optimization [18]. For the sake of brevity and simplicity, 

only absolute values of negative bending moment are 

taken in to account.  

The foremost optimality criterion is that the nose-deck 

system performs optimal provided that the maximum 

bending moments at support B in the first and second 

phases of launching are equated as much as possible. Let 

1BM  and 2BM  stand for the bending moment of 

support B in phase 1 and 2 of launching, respectively. 

Some required functions as 1f , 2f  and f  are defined as 

follow:  

 

1 1 2 2

2

1 2

(1 ),      Max( ),

( )

B L Bf M f M

f f f

  

 
 (15) 

 

Likewise, the optimization problem regarding this 

optimality criterion can be stated as: 

 

Find:                 , , ,

Minimize:          

Subjected to:     1- 1,      0 , , 1     

L q EI

L L q EI

f

   

       

 (16) 

 

It is obvious that this problem may have many 

solutions as there are many combinations for L , q  

and EI  to satisfy the equality for maximum moment 

of B in the both phases of launching. However, the 

problem can be constrained based on the qualitative 

studies given in Section 4. In this sense, by choosing a 

proper value for relative stiffness of the nose girder, 

0.2EI  , maximum bending moment of support B 

will take place at 1   (end of phase 2). The value of 

this maximum moment is independent of EI  that is 

denoted by EoL

BM  (i.e., end of launch moment). 

Therefore, 2f  can be rewritten as: 

 

2 2Max( ) EoL

B Bf M M   (17) 

 

In the other words, by focusing on 1   position, 

EI  can be eliminated from the unknown variables and 

thus for an arbitrary value of q , optimal values of L  

can be obtained by solving the following problem: 

 

Find:                  

Minimize:          

Subjected to:     0 1,      =predetermined     

L

opt

L q

f



  

 
(18) 

 

It should be remarked here that in general the values of 

EI  are interrelated with values of q ; therefore, they 

must be chosen appropriately (See reference [2]). 

Nevertheless, in this section two different sets of values 

are assumed to make the solution procedure feasible; these 

values are rather close to that are used by the designers in 

the majority of practical projects. Now by considering  

0.25EI   and 0.1q  , the following results are 

obtained: 

 

1 20.667,      , 0.0998,

     0.673 14 0

Max( ) 0.0997

opt

L

C

f f

f E

M

  

  



 (19) 

 

where, 
CM  stands for the moment of support C. Again 

by considering 0.3EI   and 0.15q   the following 

results are obtained: 

 

1 20.793,      , 0.0931,     

0.4735 14 0

Max( ) 0.0930

opt

L

C

f f

f E

M

  

  



 (20) 

 

It is worth noting that in both of these cases, the 

maximum bending moment at support C is smaller than 

1f  and 2f . As can be seen, using the simple semi infinite 

beam model makes a good platform for optimal design of 

the nose girder.  

The moment variation of support B, as in Fig. 12, 

through the FE model, based on the obtained values for 

nose specifications in (19) and (20) and that well-known 

values introduced in Section 4, are shown in Fig. 16. 

Moreover, for the sake of verification, the results of RTM 

method developed in [9], for 0.3EI  , 0.15q   and 

0.793L  , are shown in this figure. It should be pointed 

out that all the spans are assumed to be identical, and 

effects of support settlement, shear deformation and 

platform load are neglected. 
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Fig. 16 Moment variation of support B for the optimum values of nose specifications 

 

8. Conclusion 

In this paper, a new finite element model has been 

developed to analyze the construction stages of 

incrementally launched bridges. This model eliminates 

many limitations of some previous models and can be used 

for studying on behavior of the bridge considering 

different load cases. Effects of support settlement, shear 

strain, temperature gradient, construction platform and 

unequal spans can be considered in the presented model. 

By using a simple technique, all parameters involved in 

the problem can be normalized with respect to main 

specifications of deck, and all unknown variables are 

obtained as dimensionless normalized quantities. This 

method is especially advantageous for studying on the 

nose-deck interaction and optimizing the nose 

specifications. 

A brief study on the nose-deck interaction and 

optimum specifications regarding the effect of temperature 

gradient and shear strain has been done. The final results 

indicate that the effects of these two parameters on the 

nose-deck interaction are not generally significant. 

By using the presented FE model, an extensive study 

has been done to assess the accuracy of the Marchetti’s 

conventional model. It has been concluded that this model 

is only accurate when there are at least five spans behind 

the under study station which means that the simplified 

model is not useful for studying on initial stages of 

launching. Therefore, a comprehensive study is conducted 

regarding rotations of pier sections during launching. Such 

a study results in some modification factors through which 

the Marchetti’s formulation can be modified for initial 

stages of launching easily. Moreover, a new simple semi 

infinite beam model has risen out of this study. It has been 

demonstrated that the model can be useful for optimum 

design of the nose girder parameters and also efficient for 

parametric study of the nose-deck system. 

In the FE model the effects of first span length and 

length of platform segments are considered, as well. It has 

been shown that the first span length plays a very 

important role for resolving the critical conditions of the 

initial stages. Therefore, suitable ranges for these 

parameters, in the view of optimum static performance of 

bridge after launching, are introduced. By using these 

optimal values, the initial stations act like the farther ones; 

in addition, the benefits of using a well-optimized nose 

girder can be preserved for all the constructional stages. 
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