Search published articles


Showing 21 results for Nonlinear

F. Forouzesh, Sh. Azadi,
Volume 1, Issue 1 (1-2011)
Abstract

In this article, rubber bumpers of Double - Wishbone suspension system have been modeled and analyzed. The objective of the present work is to predict the performance of these products during deformation, represent an optimum method to design, obtain stiffness characteristic curves and utilize the results in the automotive suspension dynamic analysis. These parts are nonlinear and exhibit large deformation under loading. They have an important role to limit the motion of wheels and absorb energy. In this study, nonlinear FE model using ABAQUS software was used to obtain the bumper load - displacement curve. Then a laboratory test was done on the bumper to get this curve. The comparison between numerical and experimental results shows a good adaptation. A less than 2 percent difference has been observed between them. Thus, we can use this numerical method to simulate bumpers easily and accurately.
M. Abbasi, R. Kazemi, A. Ghafari Nazari,
Volume 1, Issue 3 (5-2011)
Abstract

Parametric design optimization of an automotive body crashworthiness improvement is presented. The thicknesses of parts are employed as design variables for optimization whose objective is to increase the maximum deceleration value of the vehicle center of gravity during an impact. Using the Taguchi method, this study analyzes the optimum conditions for design objectives and the impact factors and their optimal levels are obtained by a range analysis of the experiment results. A full frontal impact is implemented for the crashworthiness simulation in the nonlinear dynamic code, LS-DYNA. The controllable factors used in this study consist of the six inside foreheads structural parts, while design parameters are relevant thicknesses. The most interestingly the maximum deceleration of the vehicle center of gravity is reduced by 20% during a full frontal impact while several parts experience mass reduction.
D. Younesian, A.a. Jafari, R. Serajian,
Volume 1, Issue 3 (5-2011)
Abstract

Nonlinear hunting speeds of railway vehicles running on a tangent track are analytically obtained using Hopf bifurcation theory in this paper. The railway vehicle model consists of nonlinear primary yaw dampers, nonlinear flange contact stiffness as well as the clearance between the wheel flange and rail tread. Linear and nonlinear critical speeds are obtained using Bogoliubov method. A comprehensive parametric study is then carried out and effects of different parameters like the magnitudes of lateral clearance, damping values, wheel radius, bogie mass, lateral stiffness and the track gauge on linear and nonlinear hunting speeds are investigated.
B. Mashadi, A. Aghaei,
Volume 2, Issue 1 (1-2012)
Abstract

the primary objective of this work is to introduce a gear ratio selection strategy for a CVT equipped vehicle and show its effectiveness on the fuel consumption reduction. AFuzzy control algorithm is designed for this purpose. Anonlinear model is developed for simulating the longitudinal vehicle dynamics with accelerator pedal applied by the driver as an input. In order that pedal input values can be used for evaluation of control strategy, a pedal cycle concept was introduced. With the help of these cycles different driving conditions were simulated and the fuel consumption results were obtained using Advisor software. Results showed that the control system was successful in reducing the fuel consumption, especially in low acceleration driving cycles
M. A. Saeedi, R. Kazemi, M. Rafat, A. H. Pasdar,
Volume 2, Issue 2 (4-2012)
Abstract

In this paper, a complete model of an electro hydraulic driven dry clutch along with its performance evaluation has elucidated. Through precision modeling, a complete nonlinear physical and full order sketch of clutch has drawn. Ultimate nonlinearities existent in the system prohibits it from being controlled by conventional linear control algorithms and to compensate the behavior of the system mainly during gearshift procedure, a nonlinear control program has been developed and tested. A unique approach to estimating clamp force has been adopted which makes the system comparable to a real world and full-physical one. Based on this type of modeling, the control approach is a true and feasible, ready-to-implement program which is based only on reality. The clutch model has been validated against experiments and great agreement has been attained since, every fine point has been taken into account and nothing is out of representation unless it is not crucial to system performance. The nonlinear control program does the control task very well and administrates the system in the desired trajectory.
M. A. Saeedi, R. Kazemi,
Volume 3, Issue 1 (3-2013)
Abstract

In this study, stability control of a three-wheeled vehicle with two wheels on the front axle, a three-wheeled vehicle with two wheels on the rear axle, and a standard four-wheeled vehicle are compared. For vehicle dynamics control systems, the direct yaw moment control is considered as a suitable way of controlling the lateral motion of a vehicle during a severe driving maneuver. In accordance to the present available technology, the performance of vehicle dynamics control actuation systems is based on the individual control of each wheel braking force known as the differential braking. Also, in order to design the vehicle dynamics control system the linear optimal control theory is used. Then, to investigate the effectiveness of the proposed linear optimal control system, computer simulations are carried out by using nonlinear twelvedegree- of-freedom models for three-wheeled cars and a fourteen-degree-of-freedom model for a fourwheeled car. Simulation results of lane change and J-turn maneuvers are shown with and without control system. It is shown that for lateral stability, the three wheeled vehicle with single front wheel is more stable than the four wheeled vehicle, which is in turn more stable than the three wheeled vehicle with single rear wheel. Considering turning radius which is a kinematic property shows that the front single three-wheeled car is more under steer than the other cars.
A. Amini, M. Mirzaei, R. Khoshbakhti Saray,
Volume 3, Issue 4 (12-2013)
Abstract

In spark ignition (SI) engines, the accurate control of air fuel ratio (AFR) in the stoichiometric value is required to reduce emission and fuel consumption. The wide operating range, the inherent nonlinearities and the modeling uncertainties of the engine system are the main difficulties arising in the design of AFR controller. In this paper, an optimization-based nonlinear control law is analytically developed for the injected fuel mass flow using the prediction of air fuel ratio response from a mean value engine model. The controller accuracy is more increased without chattering by appending the integral feedback technique to the design method. The simulation studies are carried out by applying severe changes in the throttle body angle to evaluate the performance of the proposed controller with and without integral feedback. The results show that the proposed controller is more effective than the conventional sliding mode controller in regulating the AFR without chattering.
A. Hemati, M. Tajdari, A.r. Khoogar,
Volume 3, Issue 4 (12-2013)
Abstract

This paper presents a reduce roll vibration of the full vehicle model with passive suspension systems using vibration absorber to change the dynamic system matrix stat’s eigenvalue. Since using the controller system has been splurged and required to energy consuming, in this research the vehicle body roll vibration has been reduced and supplied vehicle stability using a vibration absorber for the passive suspension system. In this paper a new manner is introduced to reduce body roll angle and body's roll acceleration. The transverse instability in the independent suspension is a main problem, roll angle decreased transverse stability, that it has been reduced using vibration absorber. The optimal value of vibration absorber’s mass, spring and damping coefficient has been determined by using genetic algorithms (GA) to achieve developed roll angle behavior. The main purpose of this article is to reduce vehicle body roll angle that has been acquired using vibration absorber, this manner is better than other ways for roll reduction of vehicle body because it has done without any energy consuming.
A. Ghaffari , A. Khodayari , B. Gharehpapagh , S. Salehinia ,
Volume 4, Issue 2 (6-2014)
Abstract

In this paper a control system has been designed to improve traffic conditions in car following maneuver. There are different methods to design a control system. In this paper design approach is based on the Fuzzy sliding mode control (FSMC) system. The aim of designing FSMC system is to achieve safe and desire longitudinal distance and less lateral displacement. In order to control and obtain desired longitudinal and lateral movements, suitable values of composite torque and steering angle is generated. At first to design of FSMC system, a nonlinear dynamics model of vehicle with three degrees of freedom is presented and validated with real traffic data. Then, the performance of the FSMC system has been evaluated by real car following data. At the end, the simulation results of FSMC are compared with the first and second order sliding mode control. Simulation result shows that performance of FSMC is better than sliding mode control. Also by comparing between FSMC and real driver, it is shown that FSMC is much safer than a real human driver in keeping the longitudinal distance and also the FSMC produces less lateral displacement in the lateral movement too.
J. Marzbanrad, E. Ebrahimi, M. Khosravi,
Volume 4, Issue 2 (6-2014)
Abstract

This paper focuses on the optimization of initiating dimensions of groove bearing in association with de- sired design of vehicle’s front structure which is made up of low carbon steels in the case of frontal collision. Axial bearing analysis is done numerically using nonlinear finite element code LS-DYNA. In this analysis, changes of two main parameters including measure of energy absorption of structure and maximum force of structure collision are being considered. Square structure profile is being chosen and the groves are placed on two opposite sides. Tests of collision simulation are performed for steel samples and then a mathematical equation is derived next, the initiating dimensions are optimized using Genetic Algorithm. Desired case for design of this structure part is the one which provides maximum energy absorption measure and minimum collision force in this paper, the most optimal case is an initiator with groove depth of 4.5 mm and radius of 10 mm.


D. Younesian, M. S. Fallahzadeh,
Volume 4, Issue 3 (9-2014)
Abstract

Nonlinear vibration of parabolic springs employed in suspension system of a freight car has been studied in this paper. First, dynamical behavior of the springs is investigated by using finite element method and the obtained results are then used in vibration analysis of a railway freight car. For this purpose, dynamics of a parabolic spring subjected to a cyclic excitation has been studied in the frequency range of 2 to 15 Hz. By utilizing an experimental setup, equivalent static and dynamic stiffness and damping of the spring have been obtained and compared with theoretical results. Different classes of rail irregularities are taken into account to excite the vehicle. Bond Graph method is employed to extract the equations of motion of the system and validity of the obtained equations is investigated. Finally, a parametric study is carried out and the influence of vehicle velocity and rail irregularity on vertical acceleration of the freight car has been examined.
J. Reza Pour, B. Bahrami Joo, A. Jamali, N. Nariman-Zadeh,
Volume 4, Issue 4 (12-2014)
Abstract

Robust control design of vehicles addresses the effect of uncertainties on the vehicle’s performance. In present study, the robust optimal multi-objective controller design on a non-linear full vehicle dynamic model with 8-degrees of freedom having parameter with probabilistic uncertainty considering two simultaneous conflicting objective functions has been made to prevent the rollover. The objective functions that have been simultaneously considered in this work are, namely, mean of control effort (MCE) and variance of control effort (VCE).The nonlinear control scheme based on sliding mode has been investigated so that applied braking torques on the four wheels are adopted as actuators. It is tried to achieve optimum and robust design against uncertainties existing in reality with including probabilistic analysis through a Monte Carlo simulation (MCS) approach in multi-objective optimization using the genetic algorithms. Finally, the comparison between the results of deterministic and probabilistic design has been presented. The comparison of the obtained robust results with those of deterministic approach shows the superiority robustness of probabilistic method.
B. Mashhadi, H. Mousavi, M. Montazeri,
Volume 5, Issue 1 (3-2015)
Abstract

This paper introduces a technique that relates the coefficients of the Magic Formula tire model to the physical properties of the tire. For this purpose, the tire model is developed by ABAQUS commercial software. The output of this model for the lateral tire force is validated by available tire information and then used to identify the tire force properties. The Magic Formula coefficients are obtained from the validated model by using nonlinear least square curve fitting and Genetic Algorithm techniques. The loading and physical properties of the tire such as the internal pressure, vertical load and tire rim diameter are changed and tire lateral forces for each case are obtained. These values are then used to fit to the magic formula tire model and the coefficients for each case are derived. Results show the existing relationships between the Magic Formula coefficients and the loading and the physical properties of the tire. In order to investigate the effectiveness of the method, different parameter values are selected and the lateral force for each case are obtained by using the estimated coefficients as well as with the simulation and the results of the two methods are shown to be very close. This proves the effectiveness and the accuracy of the proposed method.
M.h. Shojaeefard, S. Ebrahimi Nejad, M. Masjedi,
Volume 6, Issue 1 (3-2016)
Abstract

In this article, vehicle cornering stability and brake stabilization via bifurcation analysis has been investigated. In order to extract the governing equations of motion, a nonlinear four-wheeled vehicle model with two degrees of freedom has been developed. Using the continuation software package MatCont a stability analysis based on phase plane analysis and bifurcation of equilibrium is performed and an optimal controller has been proposed. Finally, simulation has been done in Matlab-Simulink software considering a sine with dwell steering angle input, and the effectiveness of the proposed controller on the aforementioned model has been validated with Carsim model.


P. Bayat, H. Mojallali, A. Baghramian, P. Bayat,
Volume 6, Issue 2 (6-2016)
Abstract

In this paper, a two-surfaces sliding mode controller (TSSMC) is proposed for the voltage tracking control of a two input DC-DC converter in application of electric vehicles (EVs). The imperialist competitive algorithm (ICA) is used for tuning TSSMC parameters. The proposed controller significantly improves the transient response and disturbance rejection of the two input converters while preserving the closed-loop stability. The combination of the proposed controller and ICA, realizes a fast transient response over a wide transient load changes and input voltage disturbances. For modeling the equations governing the system, state-space average modeling technique is used. In order to analyzing the results, the two input converter equipped with the proposed controller, was modeled in MATLAB/SIMULINK environment. Simulation results are reported to validate the theoretical predictions and to confirm the superior performance of the proposed nonlinear controller when it is compared with a conventional pure SMC.


J. Marzbanrad, M.a. Babalooei,
Volume 6, Issue 3 (9-2016)
Abstract

The constitutive relationships of the rubber materials that act as the main spring of a hydraulic engine mount are nonlinear. In addition to material induced nonlinearity, further nonlinearities may be introduced by mount geometry, turbulent fluid behavior, temperature, boundary conditions, decoupler action, and hysteretic behavior. In this research all influence the behavior of the system only certain aspects are realistically considered using the lumped parameter approach employed. The nonlinearities that are readily modeled by the lumped parameter approach constitute the geometry and constitutive relationship induced nonlinearity, including hysteretic behavior, noting that these properties all make an appearance in the load-deflection relationship for the hydraulic mount and may be readily determined via experiment or finite element analysis. In this paper we will show that under certain conditions, the nonlinearities involved in the hydraulic mounts can show a chaotic response.


M. Salehpour, A. Jamali, A. Bagheri, N. Nariman-Zadeh,
Volume 7, Issue 4 (12-2017)
Abstract

In this paper a new type of multi-objective differential evolution employing dynamically tunable mutation factor is used to optimally design non-linear vehicle model. In this way, non-dominated sorting algorithm with crowding distance criterion are combined to fuziified mutation differential evolution to construct multi-objective algorithm to solve the problem. In order to achieve fuzzified mutation factor, two inputs as generation number and population diversity and one output as the mutation factor are used in the fuzzy inference system. The objective functions optimized simultaneously are namely, vertical acceleration of sprung mass, relative displacement between sprung mass and unsprung mass and control force. Optimization processes have been done in two bi- and three objective areas. Comparison of the obtained results with those in the literature has shown the superiority of the proposed method of this work. Further, it has been shown that the results of 3-objective optimization include those of bi-objective one, and therefore it gives more optimum options to the designer
J. Sharifi, A. Amirjamshidy,
Volume 8, Issue 1 (3-2018)
Abstract

The electronic stability control (ESC) system is one of the most important active safety systems in vehicles. Here, we intend to improve the Electronic stability of four in-wheel motor drive electric vehicles. We will design an electronic stability control system based on Type-2 fuzzy logic controller. Since, Type-2 fuzzy controller has uncertainty in input interval furthermore of output fuzziness, it behaves like a robust control, hence it is suitable for control of nonlinear uncertain systems which uncertainty may be due to parameter variation or un-modeled dynamics. The controller output for stabilization of vehicle is corrective yaw moment. Controller output is the torque that distribute by braking and acceleration on both sides of the vehicle. We simulate our designs on MATLAB software. Some drive maneuvers will be carry to validate system performance in vehicle stability maintenance. Simulation results indicate that distributed torque-brake control strategy based on Type-2 fuzzy logic controller can improve the stability and maneuverability of vehicle, significantly in comparison with uncontrolled vehicle and Type-1 fuzzy ESC. Furthermore, we compare the conventional braking ESC with our designed ESC, i.e. distributed exertion of torque ESC and braking ESC in view point of both stabilization and performance. As we will see, proposed ESC can decrease vehicle speed reduction, in addition to better vehicle stability maintenance.


Vahid Tavoosi, Dr Javad Marzban Rad, Dr Ramazan Mirzaei,
Volume 8, Issue 2 (6-2018)
Abstract

Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertical dynamics, basic and geometrical parameters defined and degrees-of-freedom specified on a compromise between accuracy and complexity of two models. Equations of motion provided on two linear and nonlinear 5-degree-of-freedom models using two different modeling methods. There is good agreement between time responses of two presented models. The main differences of two models observed in articulated suspension degrees-of-freedom while the vehicle subjected to high frequency maneuvers that cause severe oscillations on wheels and arms in comparison to vehicle body due to lower mass and inertia properties. The linear model can be used to design a controller and the nonlinear to predict vehicle motion more accurately. Sensitivity analysis of the influential parameters is also presented to specify effects of different parameters. Results of this study may be used to design articulated suspension and making next frequency analyses.
S. Ali Mirmohammadsadeghi, Dr. Kamyar Nikzadfar, Nima Bakhshinezhad, Dr. Alireza Fathi,
Volume 8, Issue 3 (9-2018)
Abstract

In order to lowering level of emissions of internal combustion engines (ICEs), they should be optimally controlled. However, ICEs operate under numerous operating conditions, which in turn makes it difficult to design controller for such nonlinear systems. In this article, a generalized unique controller for idle speed control under whole loading conditions is designed. In the current study, instead of tedious time-consuming trial-and-error based methods, soft computing techniques are employed to tune a proportional-integral-derivative (PID) controller which controls idle speed of engine. Since model based design technique is employed, a mean value model (MVM) is taken advantage due to its evidenced merits. Moreover, a brief introduction to the selected meta-heuristics is given followed by a flowchart to show how the engine model is linked to the optimization algorithms. A set point of 750 rpm is fed to the system, and the weighted sum of the three characteristics of mean squared error, control energy, and percent overshoot of the control system is set to the problem objective function to be minimized. It is evidenced that of all the examined meta-heuristics, Bees Algorithm (BA) converges to a better solution. Finally, to consider the effectiveness of the developed optimal controllers in disturbance rejection, they are implemented to the engine MVM model. The results of the research indicate, all the four optimally designed control systems, albeit the intermediate superiority, are of conspicuous success in compensating for the input disturbances of the load torque.

Page 1 from 2    
First
Previous
1
 

© 2018 All Rights Reserved | International Journal of Automotive Engineering

Designed & Developed by : Yektaweb