Search published articles

Showing 7 results for Finite Element Method

R. Mirzaamiri, M. Esfahanian, S. Ziaei-Rad,
Volume 2, Issue 3 (7-2012)

During the design and development of truck cabins, the safety of the driver and the front seat passenger in an accident is an important task and should be considered. The cab must be designed in such a way that in an accident a sufficient survival space is guaranteed. The aim of this study is to investigate the behavior of Iran Khodro (IKCO) 2624 truck subjected to a complex crash test according to regulation ECE-R29. This regulation is a comprehensive European regulation consisting of three tests: 1-Front impact test (Test A), 2- Roof strength test (Test B), 3-Rear wall strength test (Test C). These tests do not consider the safety of the occupant directly however, a III-50th% dummy was used to assess the cab’s deformations relative to the driver survival space. A 3D finite element model of the cab and chassis was developed and subjected to tests by using LS-DYNA software. The results indicate that the cab complied with Test A and C successfully while it passed Test B marginally. Finally, two solutions are suggested and implemented to improve the cab’s response for Test B.
A. Khalkhali, S. Samareh Mousavi,
Volume 2, Issue 3 (7-2012)

In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. In this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the finite element method using commercial software ABAQUS. Comparison of the present simulation results with the results of the experiments reported in the previous works indicated the validity of the numerical analyses. A meta-model based on the feed-forward artificial neural networks are then obtained for modeling of both the absorbed energy (E) and the peak crushing force (Fmax) with respect to design variables using those data obtained from the finite element modeling. Using such obtained neural network models, a modified multi-objective GA is used for the Pareto-based optimization of the aluminum foam-filled thinwalled tubes considering three conflicting objectives such as energy absorption, weight of structure, and peak crushing force.

E. Masoumi Khalil Abad, A. Ghazanfari, R. Hashemi,
Volume 3, Issue 4 (12-2013)

In this study, an extended stress-based forming limit diagram (FLD) for prediction of necking based on the Marciniak and Kucznski (M-K) model is represented and applied in tube hydroforming. The bulge forming of a straight tube is simulated by finite element method and verified with published experimental data. This adaptive simulation technique is based on the ability to detect the onset and growth of defects (e.g., bursting and wrinkling) and to promptly readjust the loading paths. Thus, a suitable load path is determined by applying Adaptive Simulation Method in ANSYS Parametric Design Language (APDL).
D. Younesian, M. S. Fallahzadeh,
Volume 4, Issue 3 (9-2014)

Nonlinear vibration of parabolic springs employed in suspension system of a freight car has been studied in this paper. First, dynamical behavior of the springs is investigated by using finite element method and the obtained results are then used in vibration analysis of a railway freight car. For this purpose, dynamics of a parabolic spring subjected to a cyclic excitation has been studied in the frequency range of 2 to 15 Hz. By utilizing an experimental setup, equivalent static and dynamic stiffness and damping of the spring have been obtained and compared with theoretical results. Different classes of rail irregularities are taken into account to excite the vehicle. Bond Graph method is employed to extract the equations of motion of the system and validity of the obtained equations is investigated. Finally, a parametric study is carried out and the influence of vehicle velocity and rail irregularity on vertical acceleration of the freight car has been examined.
M. Namjoo, H. Golbakhshi, H. Momeni-Khabisi, F. Khoshnam,
Volume 6, Issue 3 (9-2016)

Evaluating the thermal effects and variations in temperature of rolling pneumatic tires, is a very important factor in safe performance of the vehicles. Normally, the transient thermal investigation of rolling tires is performed by tire test rigs. However, experimental analysis is a very time and cost consuming process and because of technical limitations, the tests cannot be carried out in most severe conditions. In this work, a validated finite element model is proposed for transient thermal investigation of rolling pneumatic tires. Compared with the experimental tests, the current study gives satisfactory results for temperature distribution of the tire.

M.h Shojaeifard, S. Ebrahimi-Nejad R., S. Kamarkhani,
Volume 7, Issue 1 (3-2017)

Excitations from the vehicle engine and the road surface cause vibrations in the exhaust system and the exhaust noise and vibrations are transmitted through the vehcile body and structure to the cabin, causing distractions and discomfort for the driver and passengers. In this article the method of average driving degrees of freedom displacement (ADDOFD) has been used to determine and optimize the location of suspended hanger points. Based on this approach, a model of car exhaust system is used using ANSYS software to optimize the hanger installation points for reducing vibration and to select the best positions for these points. The optimum hanger positions must have a relatively lower ADDOFD value compared to adjacent points. Then the static and dynamic analysis of the exhaust system is illustrated and finally on the basis of the above analyses, the position is chosen for the exhaust system hangers to reduce the transmission of noise and vibrations into the car cabin. Results indicate that optimization of the locations has resulted in a significant decrease in hanger loads, significantly reducing the vibrations transmitted to the vehicle cabin and increasing the life of the rubber hangers. This study has practical significance for reducing the vibration of automobile exhaust systems and the vehicle cabin.

Prof Nouby Ghazaly, Prof K. A Abd El-Gwwad,
Volume 9, Issue 2 (6-2019)

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, Yttria-stabilized Zirconia, Magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces are examined. Comparison between simulated results for aluminum, steel and cast iron materials are reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for Magnesia-stabilized zirconia, Yttria-stabilized Zirconia, Mullite and Alumina coated materials.

Page 1 from 1     

© 2018 All Rights Reserved | International Journal of Automotive Engineering

Designed & Developed by : Yektaweb