Search published articles


Showing 3 results for Engine Performance

P. Mohammadi, A.m. Nikbakht, M. Tabatabaei, Kh. Farhadi,
Volume 2, Issue 3 (7-2012)
Abstract

Global air pollution is a serious threat caused by excessive use of fossil fuels for transportation. Despite the fact that diesel fuel is a big environmental pollutant as it contains different hydrocarbons, sulphur and crude oil residues, it is yet regarded as a highly critical fuel due to its wide applications. Nowadays, biodiesel as a renewable additive is blended with diesel fuel to achieve numerous advantages such as lowering CO2, and CO emissions as well as higher lubricity. However, a few key drawbacks including higher production cost, deteriorated performance and likelihood to increase nitrogen oxide emissions have also been attributed to the application of diesel-biodiesel blends. Expanded polystyrene (EPS), known as a polymer for packaging and insulation, is an ideal material for energy recovery as it holds high energy value (1 kg of EPS is equivalent to 1.3 liters of liquid fuel). In this study, biodiesel was applied as a solvent of expanded polystyrene (EPS) during a special chemical and physical treatment. Various percentages of EPS in biodiesel blended diesel were tested to evaluate the fuel properties, emissions and performance of CI engine. The results of the variance analysis revealed that the addition of the additive improved diesel fuel properties by increasing the flash point as well as the reduction of density and viscosity. Despite a 3.6% reduction in brake power, a significant decrease in brake specific fuel consumption (7.26%) and an increase in brake thermal efficiency (7.83%) were observed at the full load and maximum speed of the engine. Additionally, considerable reductions of CO, CO2, NOx and smoke were achieved.
A. Elfasakhany,
Volume 4, Issue 1 (3-2014)
Abstract

The effects of unleaded gasoline and unleaded gasoline–ethanol blends on engine performance and pollutant emissions were investigated experimentally in a single cylinder, four-stroke spark-ignition engine with variable engine speeds (2600–3500 rpm). Four different blends on a volume basis were applied. These are E0 (0% ethanol + 100% unleaded gasoline), E3 (3% ethanol + 97% unleaded gasoline), E7 (7% ethanol + 93% unleaded gasoline) and E10 (10% ethanol + 90% unleaded gasoline). Results of the engine test indicated that using ethanol–gasoline blended fuels improve output torque, power, volumetric efficiency and fuel consumption of the engine it was also noted that fuel consumption depends on the engine speed rather than the ethanol content for ethanol less than 10% blended ratio. CO and unburned hydrocarbons emissions decrease dramatically as a result of the leaning effect caused by the ethanol addition CO2 emission increases because of the improved combustion.
A. Mirmohamadi, Sh. Alyari Shoreh Deli, A. Kalhor,
Volume 6, Issue 1 (3-2016)
Abstract

According to the Global Fuel Crisis, it seems necessary to use alternative fuel instead of gasoline. Since the natural gas is cheaper, have higher frequency than gasoline and less pollution, it is a suitable fuel. Many efforts have been done in order to replace gasoline with natural gas. One of the methods is to inject natural gas and gasoline fuel simultaneously and to use the benefits of both fuels. The purpose of this paper is studying natural gas and gasoline blend effect on engine power, torque and emissions. The simulated model was validated in different engine RPMs for gasoline and natural gas, were separately injected into the engine at full load condition. The results of simulation was had good agreement with experiments. The results show that by natural gas and gasoline Simultaneous injection power and torque have been reduced. NOX, HC and CO2 Pollutants change periodically, but their production level is generally lower than gasoline mode, but the CO pollutant increases.



Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb