Optimization foam filled thin-walled structures for the crashworthiness capability: Review

F. Djamaluddin3, S. Abdullah12, A. K. Arrifin12 and Z. M. Nopiah12

1 Department of Mechanical and Materials Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2 Center of Automotive Research (CAR), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3 Department of Mechanical Engineering, Universitas Hasanuddin, Makassar, Indonesia.

Abstract

In automotive industry, foam-filled structures have aroused increasing interest because of lightweight and capacity of energy absorption. Two types of foam filled thin walled structures such as the uniform foam filled (UF) and the functionally graded foam (FGF). To improve crashworthiness performance, FGF are used to fill structures, unlike existing uniform foam materials. In addition, by seeking for an optimal design systematically, some computational optimization signifies a more effective tool to find the best crashworthiness design of structures. This paper will an exhaustive review of the previous studies of simulation-based optimization such as metamodels, objective functions, design variables, design of experiments, optimization techniques of crashworthiness of tubes.

Keywords: Foam filled, Optimization, Crashworthiness, Thin walled structures, Uniform structure

1. Introduction

The structure of modern vehicles are expected to absorb more energy and at the same time minimizing mass. To achieve this design, foam material has shown outstanding ability in absorbing energy because of large deformations in loading nearly constant [1]. To improve the stability of collision and deformation modes of the structure thereby enhancing the overall crashworthiness, so foam filler material are used. The experiment of thin-walled tubes were investigated, it was found that the foam deformation mode with different of foam density [2]. Zhang et al [3] has been exploring of the structural designs of thin-walled room filled with aluminum foam. For the reason reducing not too much weight and increasing the crashworthiness capability, aluminium foam is the best criteria of material for automotive structures.

Conventional optimization requires a large number of iterations for an optimum form of limited practical value may, for example simulations of crash structure requires high computational cost. To address this problem, one of the most effective ways is to create a metamodel method based on finite element analysis [4]. Metamodel method can be derive the relationship objective function as output data from design variable as input data. It also expressions easier for optimization. Untill now, there are some kind of metamodel that have been developed in practical engineering. Different metamodel can provide the accuracy and the response is different [5].

Based on the brief introduction, this paper aims to review papers from reputable papers that study design optimization of crashworthiness for structures that filled by foam. Because of the capability in absorption energy, crashworthiness optimization design for Functionally Graded Foam (FGF) needs to more improve in future for in-stance its double structure under axial and oblique impact. The knowledge from review can be used to improve of the performance and utilization of structural materials using significant optimization in crashworthiness structures.

2. Crashworthiness of Foam Filled Structures

3. 2.1 Uniform Foam (UF)

For collision and crash analysis, some crashworthiness structures study and compare to find the superior structures (Figure 1). Thus, the basic concept of this theory have been studied extensively before developing a system of energy absorption. Structures under axial impact were studied such as for foam filled square tubes, circular tubes, hat tube, rectangular tapered tube, conical tube were studied [6-10]. However, structure filled by foam under different load angle was analyzed for example the crash behavior of square, circular, conical tube [11-13] containing foam under oblique loading. The combination of tubes and foam filler that play a role...
by changing the mode on the mode of failure is more effective for double tube [14-16].

2.2 Functionally Graded Foam (FGF)

In the previous study, the energy absorption performances of thin-walled structures having uniform thickness (UT) are extensively investigated. However, the UT tubes may not provide the best energy absorption capabilities. Indeed, the FGT enables to obtain variable stiffness along the structure [17]. As the new material, Functionally graded foam (FGF) depends on its density for its mechanical property. FGF proposes to absorb more energy and it is developed by density variation. However, in terms of design FGF more complex than UT. FGF has produced in laboratory by Kie-back et al. [18]. The crash capacity and characteristics of FGF was investigated [19] and it was concluded that the FGF can be perform more excellent than UT for the crashworthiness criteria. FGF filled tapered [20] as new type of foam was studied. It is limited published works discuss of FGF tube especially behavior using experimental and simulation solution under oblique impact [21].

3. Optimization of Crashworthiness Issues

Generally, engineering design involves many disciplines and one of them is multi-objective optimization associated with many types of disciplines. Problems of design commonly known as the optimization problem multiple objectives and need for simultaneous consideration of all the objective function to optimize a system. Many solutions and existing methodology for optimization especially optimization in component for the case related crashworthiness.

3.1 Crashworthiness Optimization for Bitubal Tube

It is increasing attention from the researchers, the advantage of bitubal tubes under oblique impact. To compared the energy absorption capacity of bi-tubular and tri-tubular configurations filled by tube of circular and square tubes by using simulation method [22]. Using experimental and numerical solution testing, the bitubal tubes under bending conditions was investigated and it was indicated the superiority of the ability absorbing the energy [23]. In addition, with different arrangements under quasi-static axial compression loading using experimental and finite element analyses, Kashani [24] studied bitubular square thin-walled tubes. Li et al. [25] investigated the energy absorption of single and bitubal tube filled by foam under oblique loading. The crash capacity of foam-filled bitubular tubes is better than that of the empty and the single tubes.

Computer optimizations are used to attain the best and the more effective performance of crashworthiness of structures. The optimum of squared bitubal tube was studied by Zhang [26]. They developed the design of the crashworthiness optimization. it can be concluded that bitubal structure has a better crashworthiness than the foam-filled monotubal. The structure of foam filled double tube has a better crashworthiness than a single structure for automotive applications are studied by multi-objective optimization design. Fang [27] performs the multiobjective robust design optimization (MORDO) method to explore the design of bitubal structures filled by foam. Furthermore, the optimization of the tubes under axial [28] and oblique [29] load and this bitubular structures can be implemented for the automobile bumper system.
Table 1. The type of structures, materials, loading conditions and methods of crashworthiness tubes

<table>
<thead>
<tr>
<th>Researchers</th>
<th>Structures</th>
<th>Materials</th>
<th>Loading Conditions</th>
<th>Design of Experiment</th>
<th>Meta model</th>
<th>Optimization Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>[38]</td>
<td>Square tubes</td>
<td>UF</td>
<td>Axial/Dynamic</td>
<td>D-optimal</td>
<td>Response surface method</td>
<td>Response surface method</td>
</tr>
<tr>
<td>[40]</td>
<td>Hexagonal columns</td>
<td>UF</td>
<td>Axial/Dynamic</td>
<td>polynomial functions</td>
<td>Response surface method</td>
<td>Geometrical average method</td>
</tr>
<tr>
<td>[41]</td>
<td>Tapered circular tubes</td>
<td>UF</td>
<td>Axial/Dynamic</td>
<td>Factorial design</td>
<td>Response surface method</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>[42]</td>
<td>Tapered square tubes</td>
<td>UF</td>
<td>Oblique/Dynamic</td>
<td>Full factorial design</td>
<td>Response surface method</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>[26]</td>
<td>Double square column</td>
<td>UF</td>
<td>Axial/Dynamic</td>
<td>D-optimal</td>
<td>Kriging</td>
<td>Genetic algorithm</td>
</tr>
<tr>
<td>[37]</td>
<td>Square columns</td>
<td>UF</td>
<td>Oblique/Dynamic</td>
<td>D-optimal</td>
<td>Kriging</td>
<td>Non-dominated Sorting Genetic Algorithm II</td>
</tr>
<tr>
<td>[43]</td>
<td>Square columns</td>
<td>FGF</td>
<td>Lateral/Dynamic</td>
<td>Full factorial design</td>
<td>polynomial functions</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>[44]</td>
<td>tapered tube</td>
<td>UF and FGF</td>
<td>Axial/Dynamic</td>
<td>Latin hypercube design</td>
<td>polynomial response radial basis function</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>[46]</td>
<td>Square columns</td>
<td>Oblique/Dynamic</td>
<td>Full factorial design</td>
<td>Kriging model</td>
<td>Multiobjective particle swarm optimization</td>
<td></td>
</tr>
<tr>
<td>[47]</td>
<td>Square columns</td>
<td>UF</td>
<td>Lateral/Dynamic</td>
<td>Latin Hypercube Sampling</td>
<td>Kriging model</td>
<td>Sequential quadratic programming</td>
</tr>
<tr>
<td>[48]</td>
<td>Square tube</td>
<td>UF</td>
<td>Axial/Dynamic</td>
<td>full factorial design</td>
<td>Method</td>
<td>Non-dominated Sorting Genetic Algorithm II</td>
</tr>
<tr>
<td>[49]</td>
<td>Double circular tube</td>
<td>UF</td>
<td>Axial and Oblique/Dynamic</td>
<td>D-optimal</td>
<td>radial basis function</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>[51]</td>
<td>ellipse tubes</td>
<td>UF</td>
<td>Oblique/Dynamic</td>
<td>D-optimal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 The type of optimization, objective functions and design variables of crashworthiness tubes

<table>
<thead>
<tr>
<th>Reference</th>
<th>Specific Energy Absorption</th>
<th>Initial Peak Force</th>
<th>Thickness Gradient</th>
<th>Thickness Ranges</th>
<th>Poisson’s Ratios</th>
<th>Mean Crushing Forces</th>
<th>Wall Thickness</th>
<th>Diameter of Tube</th>
<th>Foam Density</th>
<th>Wall Material</th>
<th>Yield Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>[47]</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>[48]</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[49]</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>[50]</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>[51]</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

2 Crashworthiness Optimization of Tube under Oblique impact

The vehicle collision happens in a combination of oblique (or off-axis) impacting direction in real world not only axial or transverse loads. The deformation mode of the tubes have been analyzed and some novel structures are proposed under the oblique loading has been analyzed and some novel structures. The Structure deformation as studied [30] It was found that a critical load angle in the transition place from the axial to the bending collapse mode. The foam-filled structures under different angle of load conditions. There was decreasing of the energy absorption as increasing loading angle [31-33]. Also the other structures such as tapered thin-walled rectangular tubes [34-35] and found it is better stability than the straight tube under oblique impact. In addition, foam-filled conical tubes as energy absorbers under oblique loads was analyzed [36]. The optimal foam-filled tube may have better crashworthiness under pure axial loading compare to the empty tube, but the optimal empty tube has more space to enhance the crashworthiness under oblique loading [37].

The optimization design especially the type of methods can be in table 2 and it continues to main finding in table 2 for crashworthiness optimization issue on thin-walled structures.

3. Conclusions

The recent research trend concerning to the use of optimization of structures were provided an overview in this paper. The number of research papers that use optimization methods to solve impact and crashworthiness problems has increased dramatically in recent years and some researchers have solved multi-objective problems related to crashworthiness using some metamodel and optimization techniques for uniform functionally graded thickness foam filled structures especially for double structures under axial and oblique impact. Finally the crashworthiness design optimization of FGF filled double structure under axial and oblique impact will be explored in future work.
References

[28] Jianguang Fang, Yunkai Gao., Guangyong Sun, Yuting Zhang, Qing Li, Crashworthiness design of foam-filled bitubal structures with uncertainty.
Optimization foam filled thin-walled structures.

[43] Shujuan Houa, Xu Hana, Guangyong Suna,b, Shuyao Long a, Wei Li b, Xujing Yang, Qing Li Multiobjective optimization for tapered circular tubes. Thin-Walled Structures 49 (2011) 855–863

[44] Yong Zhang, Guangyong Sun, Guangyao Li, Zhen Luoc, Qing Li Optimization of foam-filled bitubal structures for crashworthiness criteria, Materials and Design 38 (2012) 99–109

[45] Hanfeng Yin a,b, Guilin Wena,b, Shujuan Houa,b, Qingli Qin. Multiobjective crashworthiness optimization of functionally lateral graded foam-filled tubes. Materials and Design 44 (2013) 414–428

[46] Hanfeng Yin, Guilin Weng, Zhibo Liu, Qiang Qing, Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin-Walled Structures 75 (2014) 8–17

