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Abstract

Nonlinear hunting speeds of railway vehicles running on a tangent track are analytically obtained using Hopf

bifurcation theory in this paper. The railway vehicle model consists of nonlinear primary yaw dampers, nonlinear

flange contact stiffness as well as the clearance between the wheel flange and rail tread. Linear and nonlinear critical

speeds are obtained using Bogoliubov method. A comprehensive parametric study is then carried out and the effects

of different parameters like the magnitudes of lateral clearance, damping values, wheel radius, bogie mass, lateral

stiffness and the track gauge on linear and nonlinear hunting speeds are investigated.
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1. INTRODUCTION

Dynamic stability analysis of high-speed trains has
recently received remarkable attentions due to its
importance and critical role in railway transit. A
preventive factor in high-speed railway vehicles has
been proved to be “hunting” associated with a lightly
damped lateral/yaw response of the bogie wheel-set.
The wheel-set hunting can consequently cause the
wheel climb and eventually it can lead to the train
derailment. High speed demands in conjunction with
the higher axle loads have enhanced nowadays the
possibility of this type of dynamic instability both in
passenger and freight trains. Surveying the literature
reveals that a remarkable number of studies have been
conducted so far in dynamic stability analysis of
railway vehicles. A comprehensive history of stability
of railway vehicles presenting a retrospective view in
last two centuries has been provided by Knothe and
Bohm in [1]. A numerical bifurcation analysis has
been carried out and the chaotic dynamic behavior of
the wheelset has been evaluated as a function of the
vehicle speed, suspension stiffness, and flange forces
by Knudsen et al [2]. Effects of nonlinear yaw
dampers and wheel-rail interface on critical speeds of
a locomotive bogie have been numerically
investigated by Ahmadian and Yang in [3]. An
analytical investigation of Hopf bifurcation and
hunting behavior of a single wheel-set with nonlinear

primary yaw dampers and wheel/rail contact forces
has been presented by Ahmadian and Yang in [4].
Stabilization control for the hunting motion of a
railway wheel-set has been studied by Yabuno et al. in
[5, 6]. A passive non-linear elastic suspension device
has been proposed by Scheffel [7] in order to improve
hunting stability of railway bogies. Hunting stability
of a Y-25 freight wagon has been numerically
analyzed by Molatefi et al. [8] in the time domain. Lee
and  Cheng [9-14] employed  eigenvalue
characterization method and numerically studied
nonlinear hunting in different types of high-speed
railway vehicles travelling on varieties of tangent and
curved tracks. Effects of hollow wheels on wheel/rail
contact geometry and on the vehicle stability have
been investigated by Sawley et al. [15]. Kim and Seok
[16] employed method of multiple scales and
numerically analyzed the bifurcation and hunting
behavior of a dual-bogie railway vehicle. Flexibility of
the railway track was included in a research conducted
by Zhai et al. [17, 18] and Shabana et al. [19, 20]
critical hunting speed of a freight car with three-piece
bogies running on an elastic track was obtained. More
recently, Younesian et al. [21, 22] numerically
analyzed dynamic stability and derailment of partially
filled tanker trains running on tangent and curved
tracks. The primary purpose of the present study is to
extend the results in the literature by including the
nonlinear dynamics of flange contact in presence of
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bogie and body inertia. Nonlinear hunting analysis of
a single wheel-set (earlier studied in the literature) has
been corresponding to an infinite inertia for the bogie
and body and consequently both of them have been
assumed to be stationary. The secondary objective of
this research is to provide a comprehensive parametric
study for further investigation into the effects of
different parameters on the nonlinear hunting speed.

Although the nonlinear contact models have been
already employed in literature but the bogies are
assumed to be fixed in spatial space. Accordingly
using this assumption, the effects of bogie and body
mass are neglected in modeling and simulation.
Validity and range of application for this assumption is
investigated in this paper.

The nonlinearity arises from dynamic behavior of
the yaw dampers and also the interactive forces in
contact zone. Nonlinear governing equations of
motion are derived and discussed in the first section
followed by a brief review on stability analysis based
on the Hopf bifurcation theory. In order to provide a
parametric study, series of numerical simulations are
carried out after verification of the solution procedure.
Effects of different parameters such as un-sprung
inertia, bogie inertia, body inertia, wheel radius,
stiffness and damping of the secondary and primary
suspension systems on both the linear and nonlinear
hunting speeds are evaluated.

2. GOVERNING EQUATIONS OF MOTION

A wheelset with lateral and yaw degrees of freedom
is combined with a bogie and body as illustrated in
Figure 1. Using the nonlinear contact model [3, 23]
for the wheel/rail interaction the nonlinear governing
equations of motion can be derived as:

(D
\
in which:
F =-2Ky-2Cy, )

1-b

Fig. 1. Body, bogie and wheelset configuration, (a) Front
view, (b) Upward view.

The flange contact force Fr is modeled as a nonlinear
spring with dead-band equal to the flange clearance i.e.

F =1{0; —§<y<s, (€)

Ky-8; y>s,
KF+8);, y<-=5
where K, and § are respectively the rail lateral
stiffness and flange clearance. Yaw differential
equation of motion can be then expressed as:

M =-2K by —2bC , 4)

The nonlinear longitudinal yaw damping force Fy
can be defined by [3]:

. CV +CV 4+CV +CV ; V >0, )
“lcv —cv —cVv -cVv ; V <o,
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Where v = by . The nonlinear equations of motion V=V +epn )
are expressed in the state space so that the state vector
is selected to be: in which U the detuning parameter. Accordingly,
. oy the state matrix can be expanded by
x y
x Y
x=|f =i’ (6) AWV)=A (V) —ceud (V) +(e) A (V) F (10)
x z
i x Combining equations (7) and (9) gives:
X
Accordingly, the nonlinear equations are converted X=A (V)X+eF (X;u,e) ;XeR , (11)
into:
Where
X=AW)X+F(X) XE€R, Q)

In which the matrix equations are divided into two - - - — —
parts of linear and nonlinear ones. £(X) denotes the
nonlinear terms and the elements of the matrix 4(V)
are described as:

By using the Bogoliubov method [24], the solutions
can be approximated by:

— _ 0] . ]
y(® a B
_ - ®) w(o) a B (12)
'f((tt)) =2a® | |5 |costp®)) - g Sin(e®) [ip=wt+6
(1) . g
- — x(©) o B
*() B
Defining V and V- to be respectively the nonlinear
and linear hunting speeds and perturbing V" around V- Where @ is determined by initial condition, a;s
one can arrive to: are real parts and fis are imaginary parts of
* 10
. 95
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Fig. 2. Difference between hopf bifurcation diagrams for three different systems.
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eigenvectors for 4,(V,). a(t) and ¢(t) are obtained by
first-order approximation:
da

d
E=£A1(a),%=w+eBl(a), (13)

in which, 4,(a) and B, (a) are obtained by:

1
A (@)= ﬁf Zf (p Cos@+q Sing)deg,

) (14)
B (a)= ﬁf Zf (q Cos@ —p Sing)de,

p;s represent real parts and q;s are imaginary parts
of AJ(V.)'s eigenvectors. Matrix equation of 4,(a)=0
is numerically solved and the corresponding limit
cycles are obtained. Stability of the limit cycles can be
consequently checked by the following condition.

—— < 0, — Stable Solution —— > 0, — Unstable Solution

3. NUMERICAL RESULTS

Series of numerical simulations are directed in this
section to provide a comprehensive parametric study
on the linear and nonlinear hunting speeds. At the first
part, effects of neglecting the bogie and body degrees

of freedom are focused. Figure (2) shows the
bifurcation diagram for three different systems i.e. 1-
single wheelset, 2- bogie-wheelset and 3-body-bogie-
wheelset. Employing the Bogoliubov approach, the
linear and nonlinear hunting speeds are obtained for
three systems and listed in Table 1.

The obtained values not only verify validity of the
solution procedure for a single wheelset [4] but also
they prove that both the bogie and body degrees of
freedom may remarkably reduce hunting speeds.
"Figure 2 is emphasizing that neglecting the body and
bogie motions in modeling could lead to significant
difference between the reality and simulation. This
assumption is predicting the critical speed wrongly
being 144 km/hr instead of 126 km/hr." This reductive
effect is enhanced in case of the nonlinear hunting. In
other words, modelling of a single wheelset reduces
the safety thresholds in vehicle designs against
derailment. Effects of different parameters on both
linear and nonlinear hunting speeds are evaluated in
the following sections.

3. 1. Un-sprung Mass

Effects of un-sprung mass in conjunction with the
lateral stiffness on the hunting speeds are illustrated in
Figure 3. It is seen that, by increasing lateral stiffness
in primary suspension system, both linear and

Table 1. Mechanical properties of the railway vehicle

lateral stiffness of secondary suspension
lateral damping of secondary suspension

Parameters Value

wheelset conicity h=10.05rad
flange clearance 6=0.00923 m
half of the primary yaw spring arm b=1.00 m

lateral damping of primary suspension C =2.1x10
lateral rail stiffness K =1.617x10
lateral stiffness of primary suspension K =8.67x10
yaw spring stiffness of primary suspension K =8.67x10
damping coefficients for primary yaw dampers | C =1.923x10 ,C =5.14x10 ,C =-3.1127x10 ,C =5.14x10
half of the track gauge d=0.7176 m
lateral creep force coefficient f =6.728x10 N
spin creep force coefficient f =1000 N
lateral spin creep force coefficient f =12x10 N.m
longitudinal creep force coefficient f =6.728x10 N
roll moment of inertia of wheelset I =6257kgm
spin moment of inertia of wheelset I =133.92kgm
wheelset mass m =1800 kg
bogie mass m =4000 kg
wagon mass m =35000 kg
wheel radius r =0.533m

axle load W =18000 N

Ky =350000 N/m
Cy =17500 N.S/m
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Fig. 3. Effect of un-sprung mass on critical speeds.

nonlinear critical speeds increase. In this case,
increasing the un-sprung mass remarkably reduces
both the linear and nonlinear hunting speeds. This
behavior verifies lower potential of the lighter
wheelsets to follow the hunting oscillatory motion.

3. 2. Wheelset Radius

Effects of wheel diameter on the hunting speeds are
illustrated in Figure 4. It is seen that, increasing the
wheel radius results in the larger hunting speeds. This
means that for an identical wheelset offset with respect
to the track centerline, the center of a larger wheel meets
a smaller speed change percentage than the center of a
smaller wheel. This means that any wheel grinding
enhance possibility of the hunting in operation.
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3. 3. Track Gauge

Numerical simulations demonstrate that the linear
and nonlinear critical speeds respectively decrease and
increase for wider track guages (Figure 5). In other
words, nonlinear hunting speeds converges to the
linear ones in wider tracks. Effects of the intrinsic
source of nonlinearity i.e. the clearance becomes
weaker when its relative dimensions get smaller with
respect to the track width dimension.

3. 4. Conicity

It is found that any larger equivalent conicity leads
to lower critical speed up to a specific concity value
(Figure 6). Any larger concity leads to larger speed
difference between the two wheels and consequently it

0.52 0.54 0.56 .58

Fig. 4. Effect of wheel radius on critical speeds.
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Fig. 5. Influence of the track gauge on the hunting behavior
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Fig. 6. Effects of the equivalent conicity on critical speeds

results in a higher potential to oscillatory hunting
motion. Although increasing too much of conicity will
not be effective, but it has a remarkable reductive
effect both on the linear and nonlinear hunting speeds
in low concity range (<0.05).
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3. 5. Yaw Spring Stiffness of Primary Suspension

Effects of the yaw stiffness on the linear and
nonlinear hunting speeds are illustrated in Figure 7. It is
seen that both the linear and nonlinear hunting speeds
are monotonically increasing functions of the yaw

Fig. 7. Effects of yaw stiffness on hunting speeds
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Fig. 8. Influnces of the flange clearance on critical speeds

stiffness. This means that for an identical wheelset offset
with respect to the track centerline, yaw stiffeners can
remarkably constraint the hunting oscillatory motion of
the wheelset. As a result, increasing the yaw stiffness can
be employed as a control strategy in postponing the
hunting phenomenon.

3. 6. Flange Clearance

Numerical simlations demonstarte that the flange
clearance remarakably reduces the nonlinear speeds while
it has no significant effect on the linear hunting speed
(Figure. 10). The flange clearance can remarkably reduce
the overall stiffness of the wheelset system in lateral
direction and consequently it can enhance the possibility
the hunting oscillatory motion in yaw direction. In other
words, the linearized model has no sesntivity with respect
the falnge clearance while the nonlinear model is
correlated with what happens in reality.

155~
150+
145+

140 -

ViKm/h)
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==

It is also found that the rail stiffness has no
siginifacnt effect neither on the linear nor on the
nonlinear hunting speed.

3. 7. Secondary Lateral Stiffness and Damping

According to the Figures 9 and 10, increasing the
lateral stiffness and damping in secondary suspension
system leads to the larger values for both linear and
nonlinear critical speeds. They have both a smaller
influence on the hunting speed with respect to the
primary suspension since they are not directly
connected the wheelset. An asymptotic behavior is
observed for both sequence of variations with respect
to the lateral stiffness and damping.

3. 8. Bogie Inertia

The objective in this section is to investigate how

| —Linear model
| ==~ Honlinear model

4 4.5 5 5.5

Kya dN/m) x10°

Fig. 9. Influence of lateral secondary suspension stiffness on hunting speeds
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Fig. 10. Influence of lateral secondary suspension damping on the hunting speeds
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Fig. 12. Effects of body mass on hunting speeds

the bogie inertia can affect both the linear and
nonlinear critical speeds. As shown in Figure 12, it is
seen that both the critical speeds are asymptotically
increasing functions of the bogie mass. This means

that heavier bogies can further restrict the lateral/yaw
motion of the wheelset due to their larger inertia and
resistance to motion.
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3. 9. Body Inertia

As it was earlier discussed in Introduction, the
bogie and also body are sometimes assumed to be a
fixed support for the wheelset in the literature. The
objective here in this section is to evaluate the order of
error for such an assumption. Effects of the body mass
on the linear and nonlinear hunting speeds are
illustrated in Figure 11. As it is seen, the prescribed
assumption may lead to a significant error in hunting
estimations. For an infinite body-mass, the results
coincide with those available in the literature based on
the rigidity assumption. This means that the real
hunting speeds is remarkably smaller than those
obtained based on the rigidity assumption. In order to
summarize the conducted sensitivity analysis, a
parametric sweep is carried out in the range of +50%
and the results are illustrated in Figures 13 and 14

respectively for linear and nonlinear model.
4. CONCLUSIONS

Hopf bifurcation theory was employed and
nonlinear hunting speeds of a railway vehicle running
on a tangent track were analytically obtained in this
paper. A comprehensive parametric study was carried
out and effects of different parameters on the linear
and nonlinear hunting speeds were investigated. Two
main matters i.e. assuming the body as a fixed support
and influence of the nonlinear elements in calculation
of the hunting speed were focused. It was found that
the support assumption may lead to a significant error
in hunting estimations. In other words, rigidity
assumption leads to larger hunting speeds than reality
and this underestimation can end up to a risky
misinformation. Lateral stiffness and damping both in
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Fig. 13. Parametric study in linear model
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Fig. 14. Parametric study in nonlinear model.
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primary and secondary suspension  systems
asymptotically enhance the nonlinear critical speeds.
Increasing the un-sprung mass remarkably reduces the
nonlinear hunting speeds while the bogie mass and
specially body mass improve the hunting behavior. It
was also shown that the nonlinear hunting speeds
converge to the linear ones in wider tracks. It was
found that any larger equivalent conicity leads to
lower critical speed up to a specific conicity value
(<0.05). Tt was also observed that the linear model has
not any remarkable sensitivity with respect to the
flange clearance while the nonlinear hunting speed is
significantly influenced by it. It was also proved that
yaw springs can still preserve their effectiveness in
hunting control even in presence of nonlinear
elements and flange clearance.
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Nomenclature

a
b

Half of the track gauge
Half of the yaw spring arm

C;, C,, Cy, and C,: Damping coefficients for primary

yaw dampers

Lateral damping of primary suspension
Lateral damping of secondary suspension
Half of the track gauge
Lateral creep force coefficient
Lateral spin creep force coefficient

Spin creep force coefficient
Longitudinal creep force coefficient
Roll moment of inertial of wheelset
Spin moment of inertia of wheelset
Lateral rail stiffness
Stiffiness of dead-band flange force
Lateral stiffness of primary suspension
Lateral stiffness of secondary suspension
Yaw spring stiffness of primary suspension
Bogie mass

Wagon mass

Wheelset mass

Wheel radius

Linear critical speed

Relative velocity of the longitudinal yaw
damper

ER>D 0 oDg N X<
>

Axle load

Wagon lateral displacement

Wheelset lateral displacement

Bogie lateral displacement

Wheelset yaw displacement

Hunting frequency

Clearance between wheel flange and rail
Small factor

Phase shift

Wheelset conicity

Perturbation of speed

Fundamental natural frequency for linearized
system
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