Frequency analysis of strongly nonlinear generalized Duffing oscillators using He's frequency-amplitude formulation and He's energy balance method

Yousefian, D.a, Akbarzade, H.b, Saadatnia, Z.a, KaramaYazdi, a,b M.b

a School of Railway Engineering, Iran University of Science and Technology, Narmak, Tehran 16846, Iran
b Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846, Iran

Abstract

In this paper, He's Frequency-Amplitude Formulation (HFAF) and He's Energy Balance Method (HEBM) are employed to solve the generalized Duffing equation in the form of over (x) + \alpha x + \alpha^2 x^3 + \alpha^3 x^5 + \cdots = 0. For any arbitrary power of n, a frequency analysis is carried out and the relationship between the natural frequency and the initial amplitude is obtained in analytical form. Accuracy and validity of the proposed techniques are then verified by comparing the numerical results obtained based on the HFAF, HEBM and exact integration method. Numerical simulations are extended for even very strong nonlinearities and very good coincidences are achieved between the numerical results. © 2010 Elsevier Ltd. All rights reserved.

Language of original document

English

Author keywords

Generalized Duffing equation; He's energy balance method; He's frequency-amplitude formulation; Nonlinear vibration

Index Keywords

Duffing oscillator; Energy balance method; Exact integration; Frequency Analysis; Generalized duffing equation; Good correlations; Non-linear vibrations; Numerical results; Numerical simulation; Strong nonlinearity; Strongly nonlinear

Engineering controlled terms; Computer simulation; Control nonlinearities; Energy balance; Numerical analysis

Engineering main heading; Nonlinear equations

References

(28) View in table layout

1. Geng, L., Cai, X.-C.
 He’s frequency formulation for nonlinear oscillators
 doi: 10.1088/0143-0807/28/5/016
 View at publisher

2. Fan, J.
 He’s frequency-amplitude formulation for the Duffing harmonic oscillator
 doi: 10.1016/j.camwa.2009.03.049
 View at publisher

3. He, J.-H.
 Comment on 'He’s frequency formulation for nonlinear oscillators'
 doi: 10.1088/0143-0807/29/4/L02
 View at publisher

4. Zhao, L.
 He’s frequency-amplitude formulation for nonlinear oscillators with an irrational force
 doi: 10.1016/j.camwa.2009.03.041

View at publisher
Zhang, H.-L.

Application of He's amplitude-frequency formulation to a nonlinear oscillator with discontinuity
doi: 10.1016/j.camwa.2009.03.018

View at publisher

Cai, X.-C., Wu, W.-Y.

He's frequency formulation for the relativistic harmonic oscillator
doi: 10.1016/j.camwa.2009.03.024

View at publisher

Zhang, Y.-N., Xu, F., Deng, L.-L.

Exact solution for nonlinear Schrödinger equation by He's frequency formulation
doi: 10.1016/j.camwa.2009.03.015

View at publisher

He, J.-H.

Iteration perturbation method for strongly nonlinear oscillations

View at publisher

Özç, T., Yıldırım, A.

Generating the periodic solutions for forcing van der Pol oscillators by the Iteration Perturbation method
doi: 10.1016/j.nonwa.2008.03.005

View at publisher

He, J.-H.

The homotopy perturbation method for nonlinear oscillators with discontinuities
doi: 10.1016/S0096-3003(03)00341-2

View at publisher

He, J.-H.

Homotopy perturbation technique

View at publisher

He, J.-H.

Homotopy perturbation method: A new nonlinear analytical technique
doi: 10.1016/S0096-3003(01)00312-5

View at publisher

He, J.-H.

Coupling method of a homotopy technique and a perturbation technique for nonlinear problems
doi: 10.1016/S0020-7462(99)00085-7

View at publisher

He, J.-H.

An elementary introduction to the homotopy perturbation method
doi: 10.1016/j.camwa.2008.06.003

View at publisher

Zhang, H.-L.

Periodic solutions for some strongly nonlinear oscillations by He's energy balance method
doi: 10.1016/j.camwa.2009.03.068

View at publisher

Mehdipour, I., Ganji, D.D., Mozaffari, M.

Application of the energy balance method to nonlinear vibrating equations
doi: 10.1016/j.cap.2009.06.016

View at publisher

Xu, L.

He's parameter-expanding methods for strongly nonlinear oscillators

View at publisher

Darvishi, M.T., Karami, A., Shin, B.-C.

Application of He's parameter-expansion method for oscillators with smooth odd nonlinearities
doi: 10.1016/j.physleta.2008.06.058

View at publisher

19 Tao, Z.-L.
Frequency-amplitude relationship of nonlinear oscillators by He's parameter-expanding method

View at publisher

20 Zeng, D.-Q.
Nonlinear oscillator with discontinuity by the max-min approach

View at publisher

21 Liu, J.-F.
He's variational approach for nonlinear oscillators with high nonlinearity
doi: 10.1016/j.camwa.2009.03.074

View at publisher

22 Younesian, D., Esmailzadeh, E., Sedaghati, R.
Existence of periodic solutions for the generalized form of Mathieu equation
doi: 10.1007/s11071-005-4338-y

View at publisher

23 Younesian, D., Esmailzadeh, E., Sedaghati, R.
Asymptotic solutions and stability analysis for generalized non-homogeneous Mathieu equation
doi: 10.1016/j.cnsns.2006.01.005

View at publisher

24 Nayfeh, A.H., Mook, D.T.
Wiley, New York

25 He, J.-H.
Solution of nonlinear equations by an ancient Chinese algorithm
doi: 10.1016/S0096-3003(03)00348-5

View at publisher

26 He, J.-H.
Preliminary report on the energy balance for nonlinear oscillations
doi: 10.1016/S0093-6413(02)00237-9

View at publisher

27 He, J.-H., Wu, G.-C., Austin, F.
The variational iteration method which should be followed

28 He, J.-H.
An improved amplitude-frequency formulation for nonlinear oscillators

View at publisher

Younesian, D.; School of Railway Engineering, Iran University of Science and Technology, Narmak, Tehran 16846, Iran; email: Younesian@iust.ac.ir © Copyright 2010 Elsevier B.V., All rights reserved.

Computers and Mathematics with Applications
Volume 59, Issue 9, May 2010, Pages 3222-3228