Dynamic analysis of a partially filled tanker train travelling on a curved track

Younesian, D. * Abdii, M. A. * Ashtiani, I.H.*
* School of Railway Engineering, Iran University of Science and Technology, Farjam St., Narmak, Tehran 16846-13114, Iran
* Faculty of Mechanical Engineering, K.N. Toosi University of Technology Vanak, Tehran 19991-43344, Iran

Abstract
Dynamic analysis of a partially filled tanker train travelling on a curved track is studied in this paper. A partially filled tanker is dynamically modelled when it is travelling along a real curved track. For three classes of tracks, rail irregularities are randomly generated by using Monte Carlo simulation. An equivalent dynamic system is used to model the sloshing motion of the fluid. Two derailment indexes, i.e., derailment quotient and unloading ratio, are obtained numerically as safety indicators. A parametric study is carried out to investigate how different parameters such as the operational speed, fluid modelling, rail irregularities, and fluid density may affect the derailment potential. It is found that ignoring the sloshing may lead to 18% and 25% error in the calculation of derailment quotient and unloading ratio, respectively. It is also found that lowering the centre of gravity and consequently reduction of the moment arms is more dominant than the oscillating forces due to sloshing motion. © 2010 Inderscience Enterprises Ltd.

Language of original document
English

Author keywords
Curved track; Derailment; Irregularity; Monte Carlo; Nadal; Partially filled tanker; Sloshing; Unloading; Weistock

Index Keywords
Curved track; Irregularity; MONTE CARLO; Nadal; Partially filled tanker; Sloshing; Weistock

Engineering controlled terms: Computer simulation; Derailments; Dynamic analysis; Fluids; Monte Carlo methods; Tankers (ships); Unloading

Engineering main heading: Accidents

References (32) View in table layout

Cited by since 1996
This article has been cited 0 times in Scopus.
Inform me when this document is cited in Scopus:
Set alert | Set feed

Related documents
Showing the 2 most relevant related documents by all shared references:

Find more related documents in Scopus based on:
Authors | Keywords

My Applications
Add

MostDownloaded
Most downloaded articles from the last three months in this journal:

Provided by ScienceDirect Top25

More By These Authors

Hide Applications
2 Ansari, M., Hazrati, I.  
Determination of the train wheel wear trend comparing with field measurements  
Atlanta, USA 4-6, April

3 Ansari, M., Esmaizadeh, E., Younesian, D.  
Longitudinal dynamics of freight trains  

4 Barbosa, R.S.  
A 3D contact force safety criterion for flange climb derailment of a railway wheel  
doi: 10.1080/0042311042000299711

5 Braghin, F., Bruni, S., Diana, G.  
Experimental and numerical investigation on the derailment of a railway wheelset with solid axle  
doi: 10.1080/00423110500337494

6 Elliott, A.S., Slattenengen, J., Buijk, A.J.  
Fully-coupled fluid/mechanical response prediction for truck-mounted tank sloshing using cosimulation of MSC.ADAMS® and MSC.Dytran  
April

7 Evans, J.R., Rogers, P.J.  
Validation of dynamic simulations of rail vehicles with friction damped Y25 bogies  
<table>
<thead>
<tr>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Pages</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation of the rollover threshold of heavy vehicles carrying liquid cargo: a simplified approach</td>
<td>Heavy Vehicle Systems, 1 (1)</td>
<td>1993</td>
<td>79-98. 9 cited times.</td>
<td></td>
</tr>
<tr>
<td>The Investigation of Derailments</td>
<td>Indian Railway Institute of Civil Engineering, India</td>
<td>2004</td>
<td></td>
<td><a href="http://www.iarc.iisc.ernet.in/rr/today/Karve/Yadav.pdf">http://www.iarc.iisc.ernet.in/rr/today/Karve/Yadav.pdf</a></td>
</tr>
</tbody>
</table>