Nonlinear vibration of a three-dimensional moving gantry crane subjected to a travelling trolley hoisting a swinging object

Younesian, D.*, Ghafoori, E.*, Sadeghpour, M.*
* School of Railway Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran
* School of Mechanical Engineering, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
* Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

Abstract

Nonlinear vibration of a three-dimensional moving gantry crane carrying a trolley hoisting a swinging object is studied in this paper. A finite element method is used to solve nonlinear coupled governing equations of the structure. A combination technique (Newmark–Runge–Kutta) is employed for direct integration procedure. To develop a comprehensive parametric study and sensitivity analysis of the coupled nonlinear system, numerical simulations are carried out. Parametric study is directed to find how different parameters like speed and acceleration of the trolley and gantry crane as well as the mass of the moving trolley and swinging object may affect the linear and nonlinear responses of the structure. It is found that the nonlinearity arises from large amplitude of three-dimensional motion of the swinging object.

Language of original document

English

Author keywords

Finite element method; Gantry crane; Nonlinear vibration; Swinging object

Index Keywords

Combinational technique; Coupled nonlinear systems; Direct integration; Governing equations; Large amplitude; Non-linear response; Non-linear vibration; Non-linearity; Numerical simulation; Parametric study; Runge–Kutta; Swinging object; Three-dimensional motion

Engineering controlled terms: Coupled circuits; Finite element method; Gantry cranes; Runge Kutta methods; Sensitivity analysis; Three dimensional

Engineering main heading: Nonlinear equations

References (21) View in table layout


Cited by since 1996

This article has been cited 0 times in Scopus.

Inform me when this document is cited in Scopus:

Set alert | Set feed

Related documents

Showing the 2 most relevant related documents by all shared references:


My Applications

Add

More By These Authors

The authors of this article have a total of 60 records in Scopus. (Showing 5 most recent)


Sadeghpour, M., Salari, H., Vossoughi, G., Alasty, A. Multi-variable control of chaos using PSO-based minimum entropy control
5 | Lin, Y.-H., Trehewey, M.W.

6 | Esmailzadeh, E., Ghorashi, M.
doi: 10.1006/jsvi.1995.0301

7 | Esmailzadeh, E., Ghorashi, M.

8 | Xu, X., Xu, W., Genin, J.

9 | Kargarnovin, M.H., Younesian, D., Thompson, D., Jones, C.
doi: 10.1080/00423110512331335111

10 | Kargarnovin, M.H., Younesian, D.
doi: 10.1016/j.mechrescom.2004.05.002

11 | Kargarnovin, M.H., Younesian, D., Thompson, D.J., Jones, C.J.C.
doi: 10.1016/j.compstruc.2005.05.003

12 | Younesian, D., Kargarnovin, M.H., Thompson, D.J., Jones, C.J.C.
doi: 10.1007/s11071-006-1480-4

13 | Ghafoori, E., Asghari, M.
doi: 10.1016/j.compstruct.2010.01.011

14 | Sorensen, K.L., Singhose, W., Dickerson, S.
doi: 10.1016/j.conengprac.2006.03.005

15 | Ghafoori, E., Ghahremani, A.R.
In Press

16 | Singhose, W., Porter, L., Kenison, M., Kriikku, E.
doi: 10.1016/S0967-0661(09)00054-X

17 | Wu, J.J., Whittaker, A.R., Cartmell, M.P.
doi: 10.1016/S0020-7403(01)00054-6

18 | Wu, J.J.
Sadeghpour, M., Yousefi, R., Ghafoori, E., Younesian, D.
Identification of multi-degree of freedom nonlinear systems using an extended finite element method
(2009) 7th EUROMECH Solid Mechanics Conference
Portugal, September 7-11

Prentice-Hall: Englewood Cliffs

Oxford University Press

Younesian, D.; School of Railway Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran; email: younesian@iust.ac.ir

Transactions of the Canadian Society for Mechanical Engineering
Volume 34, Issue 3-4, 2010, Pages 333-350