Vehicle System Dynamics

ISSN: 00423114
CODEN: VSDYA
DOI: 10.1080/00423110512331335111
Document Type: Article
Source Type: Journal

Abstract

The ride comfort of high-speed trains passing over railway bridges is studied in this paper. A parametric study is carried out using a time domain model. The effects of some design parameters are investigated such as damping and stiffness of the suspension system and also ballast stiffness. The influence of the track irregularity and train speed on two comfort indicators, namely Sperling's comfort index and the maximum acceleration level are also studied. Two types of railway bridges, a simple girder and an elastically supported bridge are considered. Timoshenko beam theory is used for modelling the rail and bridge and two layers of parallel damped springs in conjunction with a layer of mass are used to model the rail-pads, sleepers and ballast. A randomly irregular vertical track profile is modelled, characterized by its power spectral density (PSD). The 'roughness' is generated for three classes of tracks. Nonlinear Hertz theory is used for modelling the wheel-rail contact. The influences of some nonlinear parameters in a carriage-track-bridge system, such as the load-stiffening characteristics of the rail-pad and the ballast and that of rubber elements in the primary and secondary suspension systems, on the comfort indicators are also studied. Based on Galerkin's method of solution, a new analytical approach is developed for the combination between the rigid and flexural mode shapes, which could be used not only for elastically supported bridges but also other beam-type structures. © 2005 Taylor & Francis Group Ltd.

Language of original document

English

Index Keywords

Engineering controlled terms: Damping; Elasticity; Mathematical models; Railroad bridges; Stiffness; Structural design; Vehicle suspensions; Vehicle wheels
References (19) View in table layout

 doi: 10.1016/S0141-0296(01)00119-5

 Munich

 ENV 1991-3

 (New York: Thomas Telford)

 (Thomas Telford: New York)

 Canada: Academic Press

 doi: 10.1006/jmaa.2000.7125

 SNCF: Paris
11 Kargarnovin, M.H., Younesian, D., Thompson, D.J., Jones, C.J.C.
Nonlinear vibration and comfort analysis of high-speed trains moving over railway bridges
Manchester

12 Lin, Y., Xin, L., Yang, C., Zou, Z.
Study on dynamic response of train excited by the irregularity of track on the high speed railway bridge

13 Yang, Y.B., Yau, J.D.
A review of researches on vehicle-Bridge interaction with emphasis on high-speed rail bridges
Taipei

14 Yang, Y.B., Wu, Y.S.
Behavior of moving trains over bridges shaken by earthquakes
Munich

15 Yang, Y.B., Lin, C.L., Yau, J.D., Chang, D.W.
Mechanism of resonance and cancellation for train-induced vibrations on bridges with elastic bearings
doi: 10.1016/S0022-460X(03)00123-8

View at publisher

16 Yau, J.D., Yang, Y.B., Kuo, S.R.
Impact response of high-Speed rail bridges and riding comfort of rail cars

17 Yau, J.-D., Wu, Y.-S., Yang, Y.-B.
Impact response of bridges with elastic bearings to moving loads
doi: 10.1006/jsvi.2001.3688

View at publisher

18 Wu, Y.-S., Yang, Y.-B.
Steady-state response and riding comfort of trains moving over a series of simply supported bridges
doi: 10.1016/S0141-0296(02)00147-5

View at publisher

19 Wu, T.X., Thompson, D.J.
The effects of track non-linearity on wheel/rail impact
Vehicle System Dynamics

Kargarnovin, M.H.; Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
© Copyright 2008 Elsevier B.V., All rights reserved.

© Copyright 2008 Elsevier B.V., All rights reserved.