Vibration suppression of rotating beams using time-varying internal tensile force

Yousefian, D. *, Esmailzadeh, E. *

A new strategy for vibration suppression of a rotating beam using a time-increasing internal tensile force is proposed in this paper. Nonlinear coupled longitudinal and bending equations of motion are derived in non-dimensional form using the Hamilton principle. The first-order analytical solution of the equations of motion is obtained using the Galerkin technique combined with the multiple scales method (MSM). Numerical simulations are then performed for various increasing rates of the internal tensile force and performance of the vibration suppression strategy is studied. A very close agreement between the simulation results obtained by the numerical integration and the first-order analytical solution is achieved. Forced vibrations of the system for input excitations of either a sinusoidal or a random function with white noise time history are considered. The simulation results and dynamic performance of the suppressed system for an externally excited rotating beam show an interesting phenomenon of the form of remarkable effectiveness of the proposed vibration reduction strategy, © 2010 Elsevier Ltd. All rights reserved.
Yang, J.B., Jiang, L.J., Chen, D.Ch.
Dynamic modelling and control of a rotating Euler-Bernoulli beam
doi: 10.1016/S0022-460X(03)00611-4

Choi, C.H., Ryu, J., Park, K.H.
Active vibration control of a flexible beam, based on flow source control
doi: 10.1016/S0967-0661(98)00199-3

Na, S., Librescu, L., Shim, J.K.
Modeling and bending vibration control of nonuniform thin-walled rotating beams
incorporating adaptive capabilities

Na, S., Librescu, L., Rim, S.-N., Yoon, G.-C.
Vibration and dynamic response control of nonuniform composite rotating blades
doi: 10.1155/IJRM/2006/13807

Khulief, Y.A.
Vibration suppression in rotating beams using active modal control
doi: 10.1006/jsvi.2000.3385

Xue, X., Tang, J.
Vibration control of nonlinear rotating beam using piezoelectric actuator and sliding mode approach
doi: 10.1177/1077546307085354

Cai, G.-P., Hong, J.-Z., Yang, S.X.
Model study and active control of a rotating flexible cantilever beam
doi: 10.1016/j.ijmecsci.2004.06.001

Shete, C.D., Chandiramani, N.K., Librescu, L.I.
Optimal control of a pretwisted shearable smart composite rotating beam
doi: 10.1007/s00707-007-0443-y

Marghita, D.B., Diaconescu, C., Ivanescu, M.
Fuzzy logic control of parametrically excited rotating beam using inverse model

Kuo, C.-F.J., Lin, S.-C.
Modal analysis and control of a rotating Euler-Bernoulli beam part I: Control system analysis and controller design
doi: 10.1016/S0895-7177(98)00019-3

Luo, A.C.J., Han, R.P.S.
Analytical predictions of chaos in a non-linear rod

Mahmoodi, S.N., Jalili, N., Khadem, S.E.
An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams
doi: 10.1016/j.jsv.2007.09.027

Mahmoodi, S.N., Khadem, S.E., Kokabi, M.
Non-linear free vibrations of Kelvin-Voigt visco-elastic beams
doi: 10.1016/j.ijmecsci.2006.10.005

Esmaltzadeh, E., Jalali, M.A.
Nonlinear oscillations of viscoelastic rectangular plates

Esmaltzadeh, E., Shahani, A.R.
Longitudinal and rotational coupled vibration of viscoelastic bars with tip mass
Esmailzadeh, E.; Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada; email: ezadeh@uoit.ca


Journal of Sound and Vibration
Volume 330, Issue 2, 17 January 2011, Pages 308-320