Passive vibration control of beams subjected to random excitations with peaked PSD

Yousefian, D.*, Esmailzadeh, E.*, Sedaghati, R.†
* School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
† Faculty of Engineering and Applied Science, University of Ontario, Institute of Technology, 200 Simcoe Street North, Oshawa, Ont. L1H 7K4, Canada

Abstract

Vibration suppression in beams subjected to random excitations with peaked Power Spectral Densities (PSDs) is studied in this paper. An optimal Tuned Mass Damper (TMD) system is used to suppress the undesirable vibration. The Timoshenko beam theory is applied to the beam model and the governing equations of motion are solved using the Galerkin method. Using the Sequential Quadratic Programming (SQP) method, the problem is solved to obtain the optimal values of the design variables (i.e. frequency ratio and the damping ratio) of the TMD system. Subsequently, a parametric study is carried out and the effects of the input parameters, such as the mass ratio, structural damping ratio, and the peak frequency of the random excitation on the design variables were investigated. The robustness of the optimal control system is also studied. Based on the PSD of the random excitation and using a Monte Carlo simulation algorithm, a set of numerical data for the excitation force is generated in the time domain and the effectiveness of the designed TMD system is investigated. © 2006 SAGE Publications.

Language of original document

English

Author keywords

Optimal passive control; Random vibration; Timoshenko beam; Tuned mass damper

Index Keywords

Engineering controlled terms: Beams and girder; Equations of motion; Galerkin methods; Mathematical models; Quadratic programming; Spectrum analysis

Engineering uncontrolled terms: Optimal passive control; Power Spectral Densities (PSD); Random vibration; Sequential Quadratic Programming (SQP); Timoshenko beam; Tuned mass damper; Tuned Mass Damper (TMD); Vibration suppression

Engineering main heading: Vibration control

References (20) View in table layout

Impact study of cable-stayed railway bridges with random rail irregularities
doi: 10.1016/S0141-0296(01)00119-5

Coupled vibration control with tuned mass damper for long-span bridges

3. Chen, Y.-H., Li, C.-Y.
Dynamic response of elevated high-speed railway

4. Crandall, S.H., Mark, W.D.
5 Dyrbye, C., Hansen, S.O.
Wiley, New York, NY.

6 Esmailzadeh, E., Jati, N.
Optimum design of vibration absorbers for structurally damped Timoshenko beams