Tangential force variation due to the bogie direction reversal procedure

Lari, A.A.* Younesian, D.*, Schmid, F.T.*
* Iran University of Science and Technology, Railway Engineering School, Tehran 16844, Iran
* University of Sheffield, Mechanical Engineering Department, Mapping Building, Sheffield, S1 3JD, United Kingdom

Abstract

A range of tangential forces is generated within the contact patch when a wheelset moves on the rail. These forces are intensified when incorporating curved tracks and motorized axle rail vehicles [Ansari, P., de Pater, A.D. and Meyers, P., 2002, The stationary motion of a one-axle vehicle along a circular curve with real rail and wheel profiles. Vehicle System Dynamics, 37 (1), 29-58]. The wheelset is subject to flange contact if an unbalanced force remains in a curve towards the high rail gauge face. The resultant force in the transverse direction includes the lateral force, the radial force, and the creep forces in addition to the effect of the frequent wheelset displacement due to the kinematic oscillation [Iwnicki, S., 2003, Simulation of wheel-rail contact forces. Fatigue Fracture Engineering Material Structure, 26, 887-900]. This article has focused on a potential variation in some of the forces cited when the wheelset is subject to backward and forward movements. A severe wear rate observed within the wheel flange region in Iranian Railways was investigated by operating a test bogie on a curvaceous track. An obvious improvement in the wear rate and wear pattern of the wheels was attained when the second test bogie encountered a bogie direction reversal procedure. This enhancement is considered in this article from the force analysis standpoint.

Language of original document

English

Author keywords

Bogie direction reversal (BDR); Tangential forces; The wheel/rail interface; Wheel flange wear

Index Keywords

Engineering controlled terms: Bogies (railroad rolling stock); Railroad tracks; Vehicle wheels; Vibrations (mechanical); Wear of materials. Engineering uncontrolled terms: Bogie direction reversal (BDR); Contact patch; Vehicle System Dynamics. Engineering main heading: Railroad cars

References (17) View in table layout


Related documents

Showing the 2 most relevant related documents by all shared references:

Ansari, M., Nazari, I.A., Esmailzadeh, E. Wear rate estimation of train wheels using dynamic simulations and field measurements (2008) Vehicle System Dynamics


View all related documents based on all shared references or select the shared references to use

Find more related documents in Scopus based on:

Authors | Keywords

My Applications

Add

More By These Authors

The authors of this article have a total of 93 records in Scopus (Showing 5 most recent)


Hide Applications
5. Zboinski, K.
Dynamical investigation of railway vehicles on a curved track

An investigation to the combination effect of contact mechanics and operational aspect on the wheel wear rate and patterns of rail vehicles

7. Mace, S.E., Pena, R., Wilson, N.G., DiBrito, D.
Effects of wheel-rail contact geometry on wheel set steering forces

8. Iwiencki, S.
Simulation of wheel-rail contact forces

A general quasi-static curving theory for railway vehicles

10. Kalker, J.J.
Dordrecht, The Netherlands: Kluwer Academic Publisher,
p

11. Johnson, K.L.
Contact mechanics
(1985), Cited 6740 times.
ISBN: 0521255767; 978-052125576-9


14. Jendel, T., Berg, M.
Prediction of wheel profile wear: Methodology and verification

15. Frohling, R.
Strategies to control wheel profile wear


17. Asadi Lari, A., Fallah, A.R.
The effect of operational aspect on the rail vehicle wheel wear rate and symmetrical wear with the aids of dynamic simulation

Lari, A.A., Iran University of Science and Technology, Railway Engineering School, Tehran 16844, Iran;
email: asadi_l@iust.ac.ir
© Copyright 2008 Elsevier B.V., All rights reserved.

Vehicle System Dynamics
Volume 45, Issue 4, April 2007, Pages 359-373