Longitudinal dynamics of freight trains

Ansari, M.a, Esmailzadeh, E.a, Younesian, D.b

Abstract
A comprehensive parametric study is performed on the longitudinal dynamics of a freight train based on different nonlinear time-domain models. The effect of different parameters, such as the couplers stiffness and damping, train speed, train acceleration, load distribution pattern, on the longitudinal train dynamics are investigated. Moreover, the effect of an empty wagon and its position, on the overall longitudinal train dynamics is discussed. A computer simulation model is developed to determine the optimum placement of the second locomotive in order to obtain the lowest longitudinal forces. Further study is carried out to determine the best type of automatic couplers. Copyright © 2009 Inderscience Enterprises Ltd.

Language of original document
English

Author keywords
Automatic coupler; Freight train; Longitudinal dynamics; Numerical simulation; Parametric sensitivity analysis

Index Keywords
Engineering controlled terms: Computer simulation; Dynamics; Freight cars; Sensitivity analysis. Engineering uncontrolled terms: Automatic coupler; Freight train; Longitudinal dynamics; Numerical simulation; Parametric sensitivity analysis, Engineering main heading: Locomotives

References (21)


6 Esmailzadeh, E., Vossoughi, G.R., Goodarzi, A.
Dynamic modeling and analysis of a four motorized wheels electric vehicle
doi: 10.1076/vesd.35.3.163.2047

View at publisher

7 Fukazawa, K.
Coupler forces of 1000t class two-axle freight trains

8 Gang, V.K., Dukkipati, R.V.
Academic Press, Canada

9 Iwnicki, S.
CRC Press, Boca Raton

10 Kargarnovin, M.H., Younesian, D., Thompson, D., Jones, C.
Ride comfort of high-speed trains travelling over railway bridges
doi: 10.1080/0042311051233133511

View at publisher

11 Oyan, Chen
Dynamic simulation of Taipei EMU train

View at publisher

12 Rao, J.S., Raghavacharyulu, E., Kumar, N.
Mathematical modelling to simulate the transient dynamic longitudinal force in draw bars of a train-consist

View at publisher

13 Sany, J.R.
Accurate rail vehicle dynamic simulations by DynaRail

View at publisher

14 Seifer, T., Hauptmann, D., Muller, L.
A Computer Model for the Simulation of Longitudinal Dynamics in Trains
Italy

15 Shah, M., Thirumalai, M., Cui, K., McGh, P., Haque, I.
Symbolic methods for modelling rail vehicle systems

16 Srivastava, N., Miao, Y., Haque, I.
Influence of clearance on the dynamics of chain CVT drives
IMECE, Chicago, Illinois, USA, November

17 Verbitsky, V.G., Lobas, L.G.
Simulation of dynamic behaviour of monorail car

18 Witt, T., Müller, L.
Methods for the validation of algorithms for the simulation of longitudinal dynamics

19 Yu, M.Y.
Analysis to mechanism of train longitudinal impulse
Brisbane, pp

20 Zobory, I., Bekeri, E.
On real-time simulation of the longitudinal dynamics of trains on a specified railway line

21 Schwab Verkehrstechnik, A.G.
Technical Manual
Esmailzadeh, E., Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada; email: ezadeh@uoit.ca

International Journal of Heavy Vehicle Systems
Volume 16, Issue 1-2, March 2009, Pages 102-131

http://www.scopus.com/record/display.url?eid=2-s2.0-62549098658&origin=resultsli...