Frequency analysis of finite beams on nonlinear KelvinVoight foundation under moving loads

Ansari, M., Esmailzadeh, E., Younesian, D.
Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 200 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada

Abstract

The vibration of an EulerBernoulli beam, resting on a nonlinear KelvinVoight viscoelastic foundation, traversed by a moving load is studied in the frequency domain. The objective is to obtain the frequency responses of the beam and the effects of different parameters on the system response. The parameters include the magnitude and speed of the moving load and the foundation nonlinearity and its damping coefficient. The solution is obtained by using the Galerkin method in conjunction with the multiple scales method (MSM). The governing nonlinear partial differential equations of motion are discretized into sets of nonlinear ordinary differential equations. Subsequently, the solution is calculated for different harmonics by using the MSM as one of the powerful perturbation techniques. The steady-state responses of the main harmonic as well as its two super-harmonics are then obtained. As a case study, a conventional railway track is dynamically simulated and the jump phenomenon in the response is observed for three harmonics. Moreover, a thorough stability analysis of the system is carried out. © 2010 Elsevier Ltd.

Language of original document

English

Index Keywords

Damping coefficients; Euler Bernoulli beams; Finite beams; Frequency Analysis; Frequency domains; Jump phenomenon; Moving load; Multiple scales methods; Non-Linearity; Nonlinear ordinary differential equation; Nonlinear partial differential equations; Railway track; Stability analysis; Steady-state response; Superharmonics; System response; Viscoelastic foundation

Engineering controlled terms: Control nonlinearities; Equations of motion; Frequency response; Galerkin methods; Harmonic analysis; Ordinary differential equations; Partial differential equations; Perturbation techniques; Railroads

Engineering main heading: Nonlinear equations

References (30) View in table layout


View at publisher


View at publisher


View at publisher

Cited by since 1996

This article has been cited 0 times in Scopus.

Inform me when this document is cited in Scopus:

Set alert Set feed

Related documents

Showing the 2 most relevant related documents by all shared references:

Ansari, M., Esmailzadeh, E., Younesian, D. Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load (2010) Nonlinear Dynamics


My Applications

Add

MostDownloaded

Most downloaded articles from the last three months in this journal:

Recent advances in nonlinear passive vibration isolators
Guided Lamb waves for identification of damage in composite structures: A review
On energy harvesting from ambient vibration

View the most downloaded articles for Journal of Sound and Vibration

More By These Authors

The authors of this article have a total of 63 records in Scopus: (Showing 5 most recent)


Ansari, M., Esmailzadeh, E., Jalili, N. Exact frequency analysis of a rotating cantilever beam with tip mass subjected to torsional-bending vibrations
5. Metrikine, A.V., Popp, K.

Vibration of a periodically supported beam on an elastic half-space
doi: 10.1016/S0997-7538(99)00141-2

View at publisher

6. Vostroukhov, A.V., Metrikine, A.V.

Periodically supported beam on a visco-elastic layer as a model for dynamic analysis
of a high-speed railway track
doi: 10.1016/S0020-7683(03)00311-1

View at publisher

7. Sheng, X., Jones, C.J.C., Petyt, M.

Ground vibration generated by a load moving along a railway track

View at publisher

8. Jones, C.J.C., Sheng, X., Petyt, M.

Simulations of ground vibration from a moving harmonic load on a railway track
doi: 10.1006/jsvi.1999.2559

View at publisher

9. Ruge, P., Birck, C.

A comparison of infinite Timoshenko and Euler-Bernoulli beam models on Winkler foundation in the frequency- and time-domain
doi: 10.1016/j.jsv.2007.04.001

View at publisher

10. Cai, Y., Sun, H., Xu, C.

Three-dimensional analyses of dynamic responses of track-ground system subjected to a moving train load
doi: 10.1016/j.compstruc.2007.07.001

View at publisher

11. Coskun, I., Engin, H.

Non-linear vibrations of a beam on an elastic foundation

View at publisher

12. Wayou, A.N.Y., Tchoukuegno, R., Woafa, P.

Non-linear dynamics of an elastic beam under moving loads

View at publisher


Nonlinear response of a beam under distributed moving contact load

View at publisher

14. Wei, H., Yida, Z.

The dynamic response of a viscoelastic winker foundation-supported elastic beam impacted by a low velocity projectile

View at publisher

15. Ayoub, A.

Mixed formulation of nonlinear beam on foundation elements
doi: 10.1016/S0045-7894(03)00154-4

View at publisher

16. Patel, B.P., Ganapathi, M., Touratier, M.

Nonlinear free flexural vibrations/post-buckling analysis of laminated orthotropic beams/columns on a two parameter elastic foundation

View at publisher

17. Rajasekhara Naidu, N., Venkateswara Rao, G.

Free vibration and stability behaviour of uniform beams and columns on nonlinear elastic foundation
doi: 10.1016/0045-7949(95)00224-3

View at publisher

18. Lenci, S., Tarantino, A.M.

Chaotic dynamics of an elastic beam resting on a winkler-type soil
doi: 10.1016/S0960-0779(96)00306-6

View at publisher

19. Coskun, I.

The response of a finite beam on a tensionless Pasternak foundation subjected to a harmonic load
doi: 10.1016/S0997-7038(03)00011-1

View at publisher

20. Sheinman, I., Adan, M., Altus, E.
On the role of the displacement function in nonlinear analysis of beams on an elastic foundation

View at publisher

Deflection of nonuniform beams resting on a nonlinear elastic foundation

View at publisher

22. Sartee, D.M., Gongalves, P.B.
Oscillations of a beam on a non-linear elastic foundation under periodic loads

View at publisher

23. Dahiberg, T.
Dynamic interaction between train and nonlinear railway track model

Munich, Germany September 2-5

24. Iwnicky, S.
Taylor and Francis New York

25. Wu, T.X., Thompson, D.J.
The effects of track non-linearity on wheel/rail impact

View at publisher

Optimal passive vibration control of Timoshenko beams with arbitrary boundary conditions traversed by moving loads

doi: 10.1016/j.compstruc.2005.03.003

View at publisher

27. Kargamovin, M.H., Younesian, D., Thompson, D.J., Jones, C.J.C.
Response of beams on nonlinear viscoelastic foundations to harmonic moving loads
doi: 10.1016/j.compstruc.2005.03.003

View at publisher

Periodic solutions of strongly non-linear oscillators by the multiple scales method
doi: 10.1006/jsvi.2002.5143

View at publisher

29. Lakrad, F., Belhaq, M.
Journal of Sound and Vibration
Volume 330, Issue 7, 28 March 2011, Pages 1455-1471

View at publisher

Esmailzadeh, E.; Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada; email: ezadeh@uoit.ca

© Copyright 2011 Elsevier B.V., All rights reserved.