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Abstract - Most of neural network training algorithms make 

use of gradient-based search and because of their 

disadvantages, researchers always interested in using 

alternative methods. In this paper to train feedforward, neural 

network for prediction problems a new Hybrid Improved 

Opposition-based Particle swarm optimization and Genetic 

Algorithm (HIOPGA) is proposed. The opposition-based PSO is 

utilized to search better in solution space. In addition, to 

restrain model overfit with training pattern, a new cross 

validation method is proposed. Several benchmark problems 

with varying dimensions are chosen to investigate the 

capabilities of the proposed algorithm as a training algorithm. 

The result of HIOPGA is compared with standard 

backpropagation algorithm with momentum term. 

Keywords: PSO, GA, Prediction, Hybrid Algorithm 

1 Introduction 

 Neural network (NN) is one of the most important data mining 

techniques. It is used with both supervised and unsupervised 

learning [1]. Training NN is a complex task of great 

importance in problems of supervised learning. Most of NN 

training algorithms make use of gradient-based search. These 

methods have the advantage of the directed search, in that 

weights are always updated in such a way that minimizes the 

error, which called NN learning process. However, there are 

several negative aspects with these algorithm such as 

dependency to a learning rate parameter, network paralysis, 

slowing down by an order of magnitude for every extra 

(hidden) layer added and complex and multi-modal error space, 

Therefore, these algorithms most likely gets trapped into a local 

minimum, making them entirely dependent on initial (weight) 

settings which make the algorithms not guaranteed to be 

universally useful [2]. Metaheuristic global search strategy 

makes them able to avoid being trapped into secondary peak of 

performance and can therefore provide effective and robust 

solution to the problem of NN and training [3]. Metaheuristics 

have the advantage of being applicable to any type of NN, 

feedforward or not, with any activation function, differentiable 

or not [2]. Metaheuristics provide acceptable solutions in a 

reasonable time for solving hard and complex problems; they 

are particularly useful for dealing with large complex problems, 

which generate many local optima. They are less likely to be 

trapped in local minima than traditional gradient-based search 

algorithms. They do not depend on gradient information and 

thus are quite suitable for problems where such information is 

unavailable or very costly to obtain or estimate [4]. The outline 

of this paper is as follows. Section 2 presents literature review 

about metaheuristic algorithm for training NN. In section 3, the 

proposed particle and chromosome, criterion for accuracy 

evaluation, component and operator of the proposed algorithm, 

the proposed cross validation, steps of the algorithm, and the 

termination criterions is completely described. In section 4, 

experimental results, the value of parameter and convergence 

graph is presented. In section 5 summery, conclusion and some 

hints for the future research is given. 

2 Literature Review 

 Metaheuristic algorithms for training NN could divide 

into single-solution based and population-based algorithms (S-

Metaheuristic and P-Metaheuristic). In training NN with S-

Metaheuristic [5], [6] used tabu search approach and [7], [8] 

used simulated annealing approach. One could divide NN 

training with P-Metaheuristic into two main groups, which are 

train with Evolutionary Algorithms (EA) and train with swarm 

intelligence algorithms, respectively. Learning and evolution 

are two fundamental forms of adaptation. There has been a 

great interest in combining learning and evolution with NN and 

combinations between NN’s and EA’s can lead to significantly 

better intelligent systems than relying on NN’s or EA’s alone 

[9]. In Training NN with EA [10] and [11] make a comparison 

among proposed EA and a gradient-based algorithm, [12] and 

[13] combine EA with gradient-based local search algorithm to 

obtain better result. Another class of P-Metaheuristic, which is 

used as training algorithm, is swarm intelligence. They 

originated from the social behavior of those species that has a 

common target (e.g. compete for foods) [4]. Among swarm 

intelligence inspired optimization algorithms Particle Swarm 

Optimization (PSO) is one the most successful one. Unlike 

Genetic Algorithm (GA), PSO has no complicated evolutionary 

operators such as crossover, selection, and mutation and it is 

highly dependent on stochastic processes [2]. The PSO was 

introduced by [14] for the first time. [15] proposed a method to 

employ PSO in a cooperative configuration which  is achieved 

by splitting the input vector into several sub-vectors, each 

which is optimized cooperatively in its own swarm.[16] and 
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[17] make use of PSO to train neural network. In these research 

authors just use a very simple problem that did not reveal 

outperformance of their method.[18] presents a modified PSO 

which  adjust the trajectories (positions and velocities) of the 

particle based on the best positions visited earlier by 

themselves and other particles, and also incorporates 

population diversity method to avoid premature convergence. 

[19] analyzes the use of the PSO algorithm and two variants 

with a local search operator. [20] use multi-phase PSO 

algorithm (MPPSO) which simultaneously evolves multiple 

groups of particles that change their search criterion when 

changing the phases, and also incorporates hill-climbing. 

In addition to the modifications made to basic PSO algorithm, a 

variety of other PSO variations have also been developed. 

Among these variations are those which incorporate 

opposition-based learning into PSO is capable of delivering 

better performance as compared to the standard PSO. 

Opposition-based learning was first introduced by [21] later 

applied to PSO. Opposition-based learning is based on the 

concept of opposite points and opposite numbers. [22] 

proposed a modified PSO algorithm for noisy problems which 

utilized opposition-based learning. [23] proposed an 

opposition-based comprehensive learning PSO which utilized 

opposition-based learning for swarm initialization and for 

exemplar selection. [24] Presented the improved PSO which 

utilized a simplified form of opposition-based learning. In this 

approach, the particle having worst fitness in each iteration is 

replaced by its opposite particle. Opposition-based learning 

was only applied to one particle instead of the whole swarm 

and was also not used at the time initialization. Apart from PSO 

researcher employed other swarm intelligence but none of the 

is successful as PSO. [25] presented a continuous version of 

ACO algorithm (i.e., ACOR) also [26] proposed a novel hybrid 

algorithm based on Artificial Fish Swarm Algorithm and PSO 

both compare their proposed algorithm with specialized 

gradient based algorithms for NN training. 

3 The Proposed Algorithm 

3.1 Proposed Particle and Chromosome 

 A good detail on basic version PSO algorithm is in [27] 

and for GA is in [4]. In this research we employ fully 

connected layered feedforward networks. All units have a bias 

except for input units.  In the proposed algorithm (HIOPGA) to 

utilize a combination of PSO and GA a structure as Fig. 1 is 

employed. For simplification in this figure a NN with one 

hidden layer, three input units, one hidden units and two output 

units is considered. 

3.2 Criterion for Accuracy Evaluation 

 For classification problems, classification error 

percentage (CEP) is utilized as shown in (1) and (2) to evaluate 

the accuracy. op and tp are predicted value and target value, p 

is input pattern and P is the number of pattern. 
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For approximation problem Normalized Root Mean Squared 

Error (NRMSE) is utilized as shown in (3) and (4).where N is 

number of the output units, P number of pattern, opi and tpi are 

predicted value and target value of ith output unit for pattern p. 
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Fig. 1. (a) a NN structure (b) the particle for PSO (c) the chromosome 

for GA. 

3.3 Improved PSO 

 Although PSO is capable of locating a good solution at a 

significantly fast rate, but its ability to fine tune the optimum 

solution is comparatively weak, mainly due to the lack of 

diversity at the end of the evolutionary process. To improve the 

search ability of standard PSO time-varying parameter is 

utilized. Suppose that t and m is current and final iteration 

number and C1(t), C2(t), C1(m) and C2(m)  are cognitive and 

social component of current and final iteration then time-

varying parameter is calculated as (5) and (6). If each of 

parameter reaches to final values, it set to initial value again. By 

using the time-varying parameter, we can implement large 

cognitive component and small social component at the 

beginning of the search to guarantee particles’ moving around 

the search space and to avoid particles moving toward the 

population best position. On the other hand, a small cognitive 
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component and a large social component allow the particles to 

converge to the global optima in the latter of the search [28]. K 

is another parameter that utilized along with these parameter 

and called constriction coefficient with the hope that it can 

insure a PSO to converge [29]. K is calculated as (6), 

( ) ( ) ( )1 2t C t C tφ = + and ( ) 4tφ ≥ . 

( ) ( )( ) ( )1 1 1 1
1

m

t
C t C C t C t

m
+ = × − +  (4) 

( ) ( )( ) ( )2 2 2 2
1

m

t
C t C C t C t

m
+ = × − +  (5) 

( ) ( ) ( ) ( )2
2 2 4K t t t tφ φ φ= − − −

 
(6) 

3.4 Opposition-based Learning Components 

The proposed HIOPGA implement this method two ways. 

First, after population initialization, to start with a better 

population, the algorithm calculate the opposite position and 

velocity of each particle, then for each particle the better one 

(current particle or its opposite) is inserted into the population. 

Second, during the iteration, when the algorithm finds a new 

velocity and position for a particle, the opposite position and 

velocity of each particle is calculated and the better one is 

inserted into the current generation. When creating opposite 

particles an important question that arises is, what should be the 

velocity of these particles? Either we can have the same 

velocity as that of the original particle or we can randomly 

reinitialize the velocity. Alternatively, we can calculate the 

opposite of the velocity of the original particle. We cannot use 

the velocity of the original particle because that velocity was 

calculated using the current position of the original particle 

which would be invalid for the opposite particle. Reinitializing 

the opposite particles velocity randomly is not such an inviting 

option because we would not be taking advantage of the 

experience gained by original particle. Other researchers have 

not investigated this question and use random initialization of 

velocity. We have decided to use the opposite velocity of the 

original particle. We believe that by using opposite velocity we 

would be able to achieve better performance as we do with 

utilizing opposite positions. The opposite velocity is calculated 

in exactly the same way as we calculate the opposite particles. 

The pseudocode of opposite particle calculation is illustrated in 

Fig 2. [xmin, xmax] is the initial interval of the particle position 

(initial weight of NN) and [vmin, vmax] is the velocity interval. 

The poisons and velocity of ith particle at iteration t are 

Xi(t)=(xi1(t),…,xid(t)) and Vi(t)=(vi1(t),…,vid(t)). 

 
Fig. 2. Pseudocode of opposite particle calculation 

3.5 Random Perturbation 

PSO can quickly find a good local solution but it sometimes 

suffers from stagnation without an improvement [28]. 

Therefore, to avoid this drawback of basic PSO, the velocity of 

particles is reset in order to enable particles to have a new 

momentum. Under this new strategy, when the global best 

position is not improving with the increasing number of 

generations, each particle i will be selected by a predefined 

probability (0.5 in this study) from the population, and then a 

random perturbation is added to each dimension vid (selected by 

a predefined probability 0.5 in this study) of the velocity vector 

vi of the selected particle i. The velocity resetting is presented 

as follows: where r1, r2 and r3 are separately generated, 

uniformly distributed random numbers in range (0, 1), and vmax 

is the maximum magnitude of the random perturbation to each 

dimension of the selected particle. 

 
Fig. 3. Pseudocode of opposite particle calculation 

3.6 Evolutionary Operators 

 All illustrations, on some evolutionary schemes of GA, 

several effective mutation and crossover operators have been 

proposed for PSO. [30] proposed a crossover operator, and [31] 

proposed a Gaussian mutation operator to improve the 

performance of PSO. Utilizations of these operators in PSO 

have potential to achieve faster convergence and to find better 

solutions. During iteration of HIOPGA, if the best personal 

position for each particle i (Pbesti) is not improved for 

maxPbestPersistence successive iteration, we suppose that 

these particles are get stuck in local minima of the problem. 

Therefore, crossover and mutation operator is utilized to 

improve the performance of algorithm and obviate the 

aforementioned problem. These trapped particles establish a 

sub-population of particle. Then according to Stochastic 

Universal Sampling (SUS) two individual are selected. In 

addition, a crossover point is selected randomly. For example, 

for a NN with one hidden layer, crossover point is a number 

between 1 and 2, for a NN with two hidden layers crossover 

point is a number between 1 and 3, and for a NN with three 

hidden layer crossover point is a number between 1 and 4.  To 

make new offspring if 1 is considered as crossover point, then 

connections between input layer and hidden layer one is used 

for crossover operator. Suppose parent1(xi) and parent2(xi) is 

the ith component of selected individuals. The crossover 

operator is conducted by the (7) for position crossover and the 

(8) for velocity crossover ( ( )0,1
i

r ∈ ). 
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In each generation, the mutation operator is conducted by the 

(9), ( )1,1
i

r ∈ − . (m-t)/m makes algorithm to have great jump at 

the early phase of algorithm and small jump at the latter phase. 

( ) ( )1 maxi i i

m t
Child x r x Parent x

m

−
= × × +  

(9) 

( ) ( )1 maxi i i

m t
Child v r v Parent v

m

−
= × × +  

3.7 The Proposed Cross Validation Method 

 The training error of an NN may reduce as its training 

process progresses. However, at some point, usually in the later 

stages of training, the NN may start to take advantage of 

idiosyncrasies in the training data. Consequently, its 

generalization performance may start to deteriorate even 

though the training error continues to decrease. Early stopping 

in cross validation [32] is one common approach to avoid 

overfitting. In this method, the training data is divided into 

training and validation sets. The training process will not 

terminate when the training error is minimized instead it 

stopped when the validation error starts to increase. This 

termination criterion is deceptive because the validation set 

may contain several local minima. In HIOPGA to decrease 

negative effect of multimodal validation space on model 

generalization ability, we use a simple criterion that terminates 

the training process of the NN. At the end of each L training 

iterations, the validation error is evaluated and the process 

repeated, when this error increases for T successive times in 

comparison to first L training iterations (independent of how 

large the increases actually are), training process is terminated. 

The idea behind the termination criterion is to stop the training 

process of the NN when its validation error increases not just 

once but during T consecutive times. It can be assumed that 

such increases indicate the beginning of the final overfitting not 

just the intermittent.  

3.8 The Steps of HIOPGA 

 The steps of HIOPGA are explained as follows.  

Step1) according to initial value of parameters, specify starting 

position and velocity of particles. Set iteration counter to zero 

(iter =0).   

Step 2) to establish a better population, calculate opposite 

position and velocity of particles, and insert better particle into 

population (Pseudocode in Fig. 2).  

Step 3) for each particle specify best personal position and 

calculate the number of no improvements in it (pbesti and 

pbestiCounter). Also, specify best global position and calculate 

the number of no improvements in it (gbest and gbsetCounter).  

Step 4) if (Etrain(gbest(iter)) <ε ) then go to step 28, otherwise 

go to Step 5.  

Step 5) calculate the best global position of particle validation 

error (Eval(gbest(iter)).  

Step 6) according to equation (4), (5), and (6) calculate C1(iter 

+1), C1(iter +1) and K(iter +1).  

Step 7) calculate new position and velocity of particles 

(training by PSO).  

Step 8) for each particle, specify best personal position and 

calculate the number of no improvements in it (pbesti and 

pbestiCounter). Also, specify best global position and calculate 

the number of no improvements in it (gbest and gbsetCounter).  

Step 9) if (Etrain(gbest(iter)) <ε ) then go to Step 28 otherwise 

go to Step 10.  

Step 10) do the proposed cross validation.  

Step 11) identify a sub-population for genetic algorithm by 

specifying the particles that number of no improvements in the 

best personal position is greater than maximum allowed number 

(pbestiCounter>maxPbest) and go to Step12.  

Step 12) if the number of individuals in sub-population is grater 

than 1+[m/iter] then go to Step 13, otherwise go to Step 23.  

Step 13) set genetic counter to zero (GeneticCounter=0) Step 

14) select two individuals by using SUS methods.  

Step 15) call crossover operator using equation (7) and (8), and 

the parents are replaced with their better offsprings in main 

population.   

Step 16) call mutation operator using equation (9) and the new 

better offspring take the place of its parents in main population. 

Step 17) if number of individual in the new generation is equal 

to number of individual in the current generation go to Step 18, 

otherwise, go to Step 14.  

Step 18) establish next generation with best individual in the 

current and new generation and add one to genetic algorithm 

counter (GeneticCounter++)  

Step 19) if genetic algorithm counter is equal to number of 

individual in the sub-population go to Step 20, otherwise go to 

Step 14.  

Step 20) for each particle, specify best personal position and 

calculate the number of no improvements in it (pbesti and 

pbestiCounter). Also, specify best global position and calculate 

the number of no improvements in it (gbest and gbsetCounter).  

Step 21) if (Etrain(gbest(iter)) <ε ) then go to Step 28, 

otherwise, go to Step 22.  

Step 22) if the number of no improvements in the best global 

position is greater than maximum allowed number 

(gebestCounter>Maxgbest) then call random perturbation 

(Pseudocode in Fig. 3)   

Step 23) increase iteration counter (iter++).  

Step 24) if iteration counter is greater than maximum allowed 

number (iter>m) then go to Step 28, otherwise, go to Step 25.  

Step 25) if  the remaining for number of iteration divided by the 

proposed cross validation strip length (iter/L) become zero go 

to Step 27, otherwise, go to Step 2.  

Step 26) if validation error of global position for the current 

iteration is grater than pervious iteration (Eval(gbest(iter))> Eval 
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(gbest(iter-1)) then increase overtraining counter (Tcounter++), 

otherwise set it to zero (Tcounter =0).  

Step 27) if overtraining counter is greater than maximum 

allowed number (Tcounter>T) then go to step 28 (termination 

because of overfitting), otherwise go to Step 2. Step 28) stop 

the training. 

3.9 Termination Criterion 

   The algorithm simultaneous uses three criterions as 

termination conditions. First termination condition is based on 

training error. In this approach, at the end of each iteration t if 

the error on the training pattern is less than ε  the training 

process will terminate (for the classification problems 
210ε −=  

for the approximation problems 
610ε −= ). Second, if number 

of iteration becomes greater than a predefined number, the 

training process will be terminated. Third, according to the 

proposed cross validation method, if the algorithm meets the 

over training condition, the training process will be terminated. 

4 Experimental Studies 

 In this section, a comparison between the performance of 

HIOPGA and backpropagation algorithm (BP) with momentum 

term on several well-known benchmark problems is presented. 

The characteristics of these problems are summarized in Table 

1, which show a considerable diversity in the number of 

examples, attributes, and classes. The detailed description of 

these problems can be obtained from the University of 

California Irvine, Machine Learning Repository. For each 

benchmark problem, entropy is calculated according to (10). 

Where P(Ci) is the probability of class Ci in the data set, 

determined by dividing the number of pattern of class Ci by the 

total number of pattern in data set. Entropy of a data set is the 

average amount of information needed to identify the class label 

of a pattern in data set. In fact, entropy explores class 

distribution information in its calculation and show impurity of 

data set. It could considered as a criterion for difficulty of the 

problems. 

( ) ( )( )2logi ii
E P C P C= − ×∑  (10) 
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p
ro

b
le

m
 

Number of 

E
n

tr
o

p
y

 

In
p

u
t 

at
tr

ib
u

te
s 

O
u

tp
u

t 
cl

as
se

s 

T
ra

in
in

g
 p

at
te

rn
 

V
al

id
at

io
n

 

p
at

te
rn

 

T
es

ti
n

g
 p

at
te

rn
 

Cancer 9 2 350 175 174 0.93 

Card 51 2 345 173 172 0.99 

Diabetes 8 2 348 192 192 0.93 

Glass 9 6 107 54 53 2.18 

Heart 35 2 460 230 230 0.99 

Horse 58 3 182 91 91 1.32 

Iris 4 3 75 38 37 1.58 

Mushroom 125 2 4062 2031 2031 1 

Thyroids 21 3 3600 1800 1800 0.45 

4.1 Experimental Methodology 

The proposed algorithm is implemented with Java programming 

language and a personal computer with Intel(R) Pentiume (R) 

CPU 2.66 GHz 2.68GHz, 32 Bits Windows 7 Ultimate 

operating system and 1.50 GB installed  memory (RAM) is 

used to achieve all of the results. In both algorithm (HIOPGA 

and BP) we consider 150 as maximum number of iteration and 

observably both algorithm has less iteration to converge. The 

metaheuristic and gradient-based algorithms are sensitive to the 

value of their parameters. The parameters are the configurable 

components of HIOPGA and BP. Parameter tuning may allow a 

larger flexibility and robustness to the algorithm, but requires a 

careful initialization. Those parameters may have a great 

influence on the efficiency and effectiveness of the search. It is 

not obvious to define a priori which parameter setting should be 

used. The optimal values for the parameters depend mainly on 

the problem and even the instance to deal with and on the 

search time that the user wants to spend in solving the problem. 

One main step of this research is fine parameter tuning of the 

algorithm. To tune the parameters of each algorithm, by random 

we selected three benchmark problems with different sizes and 

only one parameter is modified at a time for each algorithm, 

while the other are not changed. Then proper values of the 

parameters determined through running the algorithm 15 times 

over different values of the parameters and calculating average 

of the objective function for these 15 runs. The criteria for 

modifying parameters are the quality of solutions and CPU time 

to find them. The final value for the parameters is as follows. 

Initial NN weights (initial position of particles or xmin and xmax) 

is [-1,1], the velocity interval is [-3,3], number of particles (np) 

is 15, initial and final value for cognitive component are 5 and 

1, respectively. Initial and final value for social component are 

1 and 5. GA mutation probability (Pm) is 0.02 and crossover 

probability (Pc) is 0.7. For the proposed cross validation 

method, L and T are 5 and 3. In addition, the learning rate and 

momentum term for BP are 0.1 and 0.9, respectively. The max 

number of training epochs, i.e., m, for both algorithms is set to 

150. One bias neuron with a fixed input +1 was connected to 

the neurons of the hidden layers and output layers. The logistic 

sigmoid function was used for the neurons in the hidden layers 

and output layer.  

4.2 Experimental Results 

To reduce the effect of random parameter initialization on 

prediction ability of the models, we run each model 100 times, 

independently and take the average and standard deviation of 

results in table 2. The BP needs much more time and iteration 

to converge but less disperses solution. The reason for this 

matter is the random essence of metaheuristic algorithm. 

 

4.3 The Convergence Graph 

Fig. 4(a)-4(i) represent number of iteration-testing error for 

the best so far network from the beginning of the algorithms. As 

these figures reveal, the proposed HIOPGA with doing big 

jump in the testing space to find better solutions converge faster 

than BP. 
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5 Conclusion 

 In this research, a hybrid algorithm based on particle swarm 

optimization and genetic algorithm was presented. During 

iteration of the proposed algorithm, when some NN (or 

particles position) in the d-dimensional space cloud not be 

improved through the IOPSO, a sub-population of such NNs is 

established and be sent to the GA, to with utilizing the GA 

crossover and mutation operators, the HIOPGA finds better NN 

for replacing in the population. The comparison between the 

proposed algorithm and standard BP with momentum term 

reveals the superiority of the algorithm, however HIOPGA in 

the final latter steps and tuning the final solution need more 

iteration than BP. For example, in Cancer problem, the testing 

error of the proposed algorithm in iteration 40 was 4.02 and 10 

iterations later i.e. at the iteration 50 error decreased to 2.99, 

but in the BP the testing error in iteration 79 is 3.21 and in the 

iteration 80 is 3.  

 

 

TABLE 2 

PERFORMANCE OF HOIPGA ON NINE BENCHMARK  PROBLEMS FOR DIFFERENT PARAMETER VALUES. ALL RESULTS WERE AVERAGED 

OVER 50 INDEPENDENT RUNS 

 

Name of 
Model Accuracy on 

Number of 

Iteration 
Average of 

Training 

Time(second) Problem Algorithm 
Training Set Validation Set Test Set 

Mean SD 
Mean SD Mean SD Mean SD 

Cancer 
HOIPGA 98.23 1.13 97.21 1.26 97.01 1.22 50.06 7.23 1.43 

BP 98.11 1.01 97.23 1.00 97.00 1.02 79.11 6.54 2.25 

Card 
HOIPGA 87.02 2.24 86.09 2.21 86.92 1.42 25.32 2.45 6.94 

BP 87.12 1.89 87.09 1.64 86.85 1.33 45.75 2.32 12.38 

Diabetes 
HOIPGA 69.19 1.23 69.11 1.14 68.87 1.13 26.59 1.45 1.68 

BP 68.99 0.98 68.87 1.09 68.54 0.95 45.11 1.40 2.81 

Glass 
HOIPGA 68.42 1.33 68.42 1.17 67.71 1.27 51.54 9.66 0.28 

BP 68.11 1.24 68.09 1.12 67.11 1.14 84.23 7.78 0.46 

Heart 
HOIPGA 79.34 1.41 79.28 1.45 77.39 1.42 45.21 5.21 2.20 

BP 78.98 1.20 78.89 1.07 77.02 1.15 59.75 3.98 2.91 

Horse 
HOIPGA 67.69 1.17 66.76 1.31 65.44 1.03 58.01 8.34 3.15 

BP 67.06 0.97 66.80 0.93 64.99 0.80 67.56 6.11 3.69 

Iris 
HOIPGA 98.02 0.18 97.01 0.32 97.02 0.39 10.18 1.02 0.12 

BP 98.12 0.02 97.21 0.19 97.01 0.18 30.51 0.87 0.34 

Mushroom 
HOIPGA 96.10 0.22 96.08 0.14 96.02 0.17 28.22 3.71 6.39 

BP 96.15 0.05 96.07 0.09 96.00 0.08 42.14 2.65 9.45 

Thyroids 
HOIPGA 93.68 0.13 93.61 0.17 92.69 0.22 17.12 1.83 48.87 

BP 93.48 0.21 93.52 0.24 92.46 0.21 25.37 1.02 69.97 

 

  

 

Fig. 4. The best so far network iteration- testing error graph for the Benchmarking problems 
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Future research will progress in two directions including 

improving training time and prediction accuracy of the 

proposed algorithm by modifying the final iteration of 

algorithm or the architecture of NN. The model training time 

or accuracy may be improved through incorporation gradient-

based local search methods with the proposed algorithm 

especially at the final training iteration of the algorithm; also, 

prediction accuracy of the algorithm could be improved by 

using another metaheuristic to optimize NN architecture. 
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