
HIOPGA: A New Hybrid Metaheuristic Algorithm to

Train Feedforward Neural Networks for Prediction

Masoud Yaghini
1
, Mohammad M. Khoshraftar

2
, Mehdi Fallahi

3

1
School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

2
 School of Railway Engineering, Company / University of Science and Technology, Tehran, Iran

3
 School of Railway Engineering, Company / University of Science and Technology, Tehran, Iran

Abstract - Most of neural network training algorithms make

use of gradient-based search and because of their

disadvantages, researchers always interested in using

alternative methods. In this paper to train feedforward, neural

network for prediction problems a new Hybrid Improved

Opposition-based Particle swarm optimization and Genetic

Algorithm (HIOPGA) is proposed. The opposition-based PSO is

utilized to search better in solution space. In addition, to

restrain model overfit with training pattern, a new cross

validation method is proposed. Several benchmark problems

with varying dimensions are chosen to investigate the

capabilities of the proposed algorithm as a training algorithm.

The result of HIOPGA is compared with standard

backpropagation algorithm with momentum term.

Keywords: PSO, GA, Prediction, Hybrid Algorithm

1 Introduction

 Neural network (NN) is one of the most important data mining

techniques. It is used with both supervised and unsupervised

learning [1]. Training NN is a complex task of great

importance in problems of supervised learning. Most of NN

training algorithms make use of gradient-based search. These

methods have the advantage of the directed search, in that

weights are always updated in such a way that minimizes the

error, which called NN learning process. However, there are

several negative aspects with these algorithm such as

dependency to a learning rate parameter, network paralysis,

slowing down by an order of magnitude for every extra

(hidden) layer added and complex and multi-modal error space,

Therefore, these algorithms most likely gets trapped into a local

minimum, making them entirely dependent on initial (weight)

settings which make the algorithms not guaranteed to be

universally useful [2]. Metaheuristic global search strategy

makes them able to avoid being trapped into secondary peak of

performance and can therefore provide effective and robust

solution to the problem of NN and training [3]. Metaheuristics

have the advantage of being applicable to any type of NN,

feedforward or not, with any activation function, differentiable

or not [2]. Metaheuristics provide acceptable solutions in a

reasonable time for solving hard and complex problems; they

are particularly useful for dealing with large complex problems,

which generate many local optima. They are less likely to be

trapped in local minima than traditional gradient-based search

algorithms. They do not depend on gradient information and

thus are quite suitable for problems where such information is

unavailable or very costly to obtain or estimate [4]. The outline

of this paper is as follows. Section 2 presents literature review

about metaheuristic algorithm for training NN. In section 3, the

proposed particle and chromosome, criterion for accuracy

evaluation, component and operator of the proposed algorithm,

the proposed cross validation, steps of the algorithm, and the

termination criterions is completely described. In section 4,

experimental results, the value of parameter and convergence

graph is presented. In section 5 summery, conclusion and some

hints for the future research is given.

2 Literature Review

 Metaheuristic algorithms for training NN could divide

into single-solution based and population-based algorithms (S-

Metaheuristic and P-Metaheuristic). In training NN with S-

Metaheuristic [5], [6] used tabu search approach and [7], [8]

used simulated annealing approach. One could divide NN

training with P-Metaheuristic into two main groups, which are

train with Evolutionary Algorithms (EA) and train with swarm

intelligence algorithms, respectively. Learning and evolution

are two fundamental forms of adaptation. There has been a

great interest in combining learning and evolution with NN and

combinations between NN’s and EA’s can lead to significantly

better intelligent systems than relying on NN’s or EA’s alone

[9]. In Training NN with EA [10] and [11] make a comparison

among proposed EA and a gradient-based algorithm, [12] and

[13] combine EA with gradient-based local search algorithm to

obtain better result. Another class of P-Metaheuristic, which is

used as training algorithm, is swarm intelligence. They

originated from the social behavior of those species that has a

common target (e.g. compete for foods) [4]. Among swarm

intelligence inspired optimization algorithms Particle Swarm

Optimization (PSO) is one the most successful one. Unlike

Genetic Algorithm (GA), PSO has no complicated evolutionary

operators such as crossover, selection, and mutation and it is

highly dependent on stochastic processes [2]. The PSO was

introduced by [14] for the first time. [15] proposed a method to

employ PSO in a cooperative configuration which is achieved

by splitting the input vector into several sub-vectors, each

which is optimized cooperatively in its own swarm.[16] and

248 Int'l Conf. Data Mining | DMIN'11 |

[17] make use of PSO to train neural network. In these research

authors just use a very simple problem that did not reveal

outperformance of their method.[18] presents a modified PSO

which adjust the trajectories (positions and velocities) of the

particle based on the best positions visited earlier by

themselves and other particles, and also incorporates

population diversity method to avoid premature convergence.

[19] analyzes the use of the PSO algorithm and two variants

with a local search operator. [20] use multi-phase PSO

algorithm (MPPSO) which simultaneously evolves multiple

groups of particles that change their search criterion when

changing the phases, and also incorporates hill-climbing.

In addition to the modifications made to basic PSO algorithm, a

variety of other PSO variations have also been developed.

Among these variations are those which incorporate

opposition-based learning into PSO is capable of delivering

better performance as compared to the standard PSO.

Opposition-based learning was first introduced by [21] later

applied to PSO. Opposition-based learning is based on the

concept of opposite points and opposite numbers. [22]

proposed a modified PSO algorithm for noisy problems which

utilized opposition-based learning. [23] proposed an

opposition-based comprehensive learning PSO which utilized

opposition-based learning for swarm initialization and for

exemplar selection. [24] Presented the improved PSO which

utilized a simplified form of opposition-based learning. In this

approach, the particle having worst fitness in each iteration is

replaced by its opposite particle. Opposition-based learning

was only applied to one particle instead of the whole swarm

and was also not used at the time initialization. Apart from PSO

researcher employed other swarm intelligence but none of the

is successful as PSO. [25] presented a continuous version of

ACO algorithm (i.e., ACOR) also [26] proposed a novel hybrid

algorithm based on Artificial Fish Swarm Algorithm and PSO

both compare their proposed algorithm with specialized

gradient based algorithms for NN training.

3 The Proposed Algorithm

3.1 Proposed Particle and Chromosome

 A good detail on basic version PSO algorithm is in [27]

and for GA is in [4]. In this research we employ fully

connected layered feedforward networks. All units have a bias

except for input units. In the proposed algorithm (HIOPGA) to

utilize a combination of PSO and GA a structure as Fig. 1 is

employed. For simplification in this figure a NN with one

hidden layer, three input units, one hidden units and two output

units is considered.

3.2 Criterion for Accuracy Evaluation

 For classification problems, classification error

percentage (CEP) is utilized as shown in (1) and (2) to evaluate

the accuracy. op and tp are predicted value and target value, p

is input pattern and P is the number of pattern.

1
()

0

p pif o t
p

otherwise
ψ

 ≠
= 


�
�

�

 (1)

()
1

100
p

p

CEP p Pψ
=

 
= ×  

 
∑

(2)

For approximation problem Normalized Root Mean Squared

Error (NRMSE) is utilized as shown in (3) and (4).where N is

number of the output units, P number of pattern, opi and tpi are

predicted value and target value of ith output unit for pattern p.

()
2

1 1

P N
pi pi

p i

t o
RMSE

P N
= =

−
=

×∑∑ (3)

1 1

100
P N

pi

p i

RMSE
NRMSE

t

P N
= =

= ×

×

∑∑
(4)

Fig. 1. (a) a NN structure (b) the particle for PSO (c) the chromosome

for GA.

3.3 Improved PSO

 Although PSO is capable of locating a good solution at a

significantly fast rate, but its ability to fine tune the optimum

solution is comparatively weak, mainly due to the lack of

diversity at the end of the evolutionary process. To improve the

search ability of standard PSO time-varying parameter is

utilized. Suppose that t and m is current and final iteration

number and C1(t), C2(t), C1(m) and C2(m) are cognitive and

social component of current and final iteration then time-

varying parameter is calculated as (5) and (6). If each of

parameter reaches to final values, it set to initial value again. By

using the time-varying parameter, we can implement large

cognitive component and small social component at the

beginning of the search to guarantee particles’ moving around

the search space and to avoid particles moving toward the

population best position. On the other hand, a small cognitive

Int'l Conf. Data Mining | DMIN'11 | 249

component and a large social component allow the particles to

converge to the global optima in the latter of the search [28]. K

is another parameter that utilized along with these parameter

and called constriction coefficient with the hope that it can

insure a PSO to converge [29]. K is calculated as (6),

() () ()1 2t C t C tφ = + and () 4tφ ≥ .

() ()() ()1 1 1 1
1

m

t
C t C C t C t

m
+ = × − + (4)

() ()() ()2 2 2 2
1

m

t
C t C C t C t

m
+ = × − + (5)

() () () ()2
2 2 4K t t t tφ φ φ= − − −

(6)

3.4 Opposition-based Learning Components

The proposed HIOPGA implement this method two ways.

First, after population initialization, to start with a better

population, the algorithm calculate the opposite position and

velocity of each particle, then for each particle the better one

(current particle or its opposite) is inserted into the population.

Second, during the iteration, when the algorithm finds a new

velocity and position for a particle, the opposite position and

velocity of each particle is calculated and the better one is

inserted into the current generation. When creating opposite

particles an important question that arises is, what should be the

velocity of these particles? Either we can have the same

velocity as that of the original particle or we can randomly

reinitialize the velocity. Alternatively, we can calculate the

opposite of the velocity of the original particle. We cannot use

the velocity of the original particle because that velocity was

calculated using the current position of the original particle

which would be invalid for the opposite particle. Reinitializing

the opposite particles velocity randomly is not such an inviting

option because we would not be taking advantage of the

experience gained by original particle. Other researchers have

not investigated this question and use random initialization of

velocity. We have decided to use the opposite velocity of the

original particle. We believe that by using opposite velocity we

would be able to achieve better performance as we do with

utilizing opposite positions. The opposite velocity is calculated

in exactly the same way as we calculate the opposite particles.

The pseudocode of opposite particle calculation is illustrated in

Fig 2. [xmin, xmax] is the initial interval of the particle position

(initial weight of NN) and [vmin, vmax] is the velocity interval.

The poisons and velocity of ith particle at iteration t are

Xi(t)=(xi1(t),…,xid(t)) and Vi(t)=(vi1(t),…,vid(t)).

Fig. 2. Pseudocode of opposite particle calculation

3.5 Random Perturbation

PSO can quickly find a good local solution but it sometimes

suffers from stagnation without an improvement [28].

Therefore, to avoid this drawback of basic PSO, the velocity of

particles is reset in order to enable particles to have a new

momentum. Under this new strategy, when the global best

position is not improving with the increasing number of

generations, each particle i will be selected by a predefined

probability (0.5 in this study) from the population, and then a

random perturbation is added to each dimension vid (selected by

a predefined probability 0.5 in this study) of the velocity vector

vi of the selected particle i. The velocity resetting is presented

as follows: where r1, r2 and r3 are separately generated,

uniformly distributed random numbers in range (0, 1), and vmax

is the maximum magnitude of the random perturbation to each

dimension of the selected particle.

Fig. 3. Pseudocode of opposite particle calculation

3.6 Evolutionary Operators

 All illustrations, on some evolutionary schemes of GA,

several effective mutation and crossover operators have been

proposed for PSO. [30] proposed a crossover operator, and [31]

proposed a Gaussian mutation operator to improve the

performance of PSO. Utilizations of these operators in PSO

have potential to achieve faster convergence and to find better

solutions. During iteration of HIOPGA, if the best personal

position for each particle i (Pbesti) is not improved for

maxPbestPersistence successive iteration, we suppose that

these particles are get stuck in local minima of the problem.

Therefore, crossover and mutation operator is utilized to

improve the performance of algorithm and obviate the

aforementioned problem. These trapped particles establish a

sub-population of particle. Then according to Stochastic

Universal Sampling (SUS) two individual are selected. In

addition, a crossover point is selected randomly. For example,

for a NN with one hidden layer, crossover point is a number

between 1 and 2, for a NN with two hidden layers crossover

point is a number between 1 and 3, and for a NN with three

hidden layer crossover point is a number between 1 and 4. To

make new offspring if 1 is considered as crossover point, then

connections between input layer and hidden layer one is used

for crossover operator. Suppose parent1(xi) and parent2(xi) is

the ith component of selected individuals. The crossover

operator is conducted by the (7) for position crossover and the

(8) for velocity crossover (()0,1
i

r ∈).

250 Int'l Conf. Data Mining | DMIN'11 |

() () () ()()1 1 2
1

i i i i i
Child x r Parent x r Parent x= × + − ×

(7)
() () () ()()2 1 2

1
i i i i i

Child x r Parent x r Parent x= − × + ×

() ()
() ()()
() ()

1 2

1 1

1 2

i i

i i

i i

Parent v Parent v
Child v Parent v

Parent v Parent v

+
= ×

+

(8)

() ()
() ()()
() ()

1 2

1 2

1 2

i i

i i

i i

Parent v Parent v
Child v Parent v

Parent v Parent v

+
= ×

+

In each generation, the mutation operator is conducted by the

(9), ()1,1
i

r ∈ − . (m-t)/m makes algorithm to have great jump at

the early phase of algorithm and small jump at the latter phase.

() ()1 maxi i i

m t
Child x r x Parent x

m

−
= × × +

(9)

() ()1 maxi i i

m t
Child v r v Parent v

m

−
= × × +

3.7 The Proposed Cross Validation Method

 The training error of an NN may reduce as its training

process progresses. However, at some point, usually in the later

stages of training, the NN may start to take advantage of

idiosyncrasies in the training data. Consequently, its

generalization performance may start to deteriorate even

though the training error continues to decrease. Early stopping

in cross validation [32] is one common approach to avoid

overfitting. In this method, the training data is divided into

training and validation sets. The training process will not

terminate when the training error is minimized instead it

stopped when the validation error starts to increase. This

termination criterion is deceptive because the validation set

may contain several local minima. In HIOPGA to decrease

negative effect of multimodal validation space on model

generalization ability, we use a simple criterion that terminates

the training process of the NN. At the end of each L training

iterations, the validation error is evaluated and the process

repeated, when this error increases for T successive times in

comparison to first L training iterations (independent of how

large the increases actually are), training process is terminated.

The idea behind the termination criterion is to stop the training

process of the NN when its validation error increases not just

once but during T consecutive times. It can be assumed that

such increases indicate the beginning of the final overfitting not

just the intermittent.

3.8 The Steps of HIOPGA

 The steps of HIOPGA are explained as follows.

Step1) according to initial value of parameters, specify starting

position and velocity of particles. Set iteration counter to zero

(iter =0).

Step 2) to establish a better population, calculate opposite

position and velocity of particles, and insert better particle into

population (Pseudocode in Fig. 2).

Step 3) for each particle specify best personal position and

calculate the number of no improvements in it (pbesti and

pbestiCounter). Also, specify best global position and calculate

the number of no improvements in it (gbest and gbsetCounter).

Step 4) if (Etrain(gbest(iter)) <ε) then go to step 28, otherwise

go to Step 5.

Step 5) calculate the best global position of particle validation

error (Eval(gbest(iter)).

Step 6) according to equation (4), (5), and (6) calculate C1(iter

+1), C1(iter +1) and K(iter +1).

Step 7) calculate new position and velocity of particles

(training by PSO).

Step 8) for each particle, specify best personal position and

calculate the number of no improvements in it (pbesti and

pbestiCounter). Also, specify best global position and calculate

the number of no improvements in it (gbest and gbsetCounter).

Step 9) if (Etrain(gbest(iter)) <ε) then go to Step 28 otherwise

go to Step 10.

Step 10) do the proposed cross validation.

Step 11) identify a sub-population for genetic algorithm by

specifying the particles that number of no improvements in the

best personal position is greater than maximum allowed number

(pbestiCounter>maxPbest) and go to Step12.

Step 12) if the number of individuals in sub-population is grater

than 1+[m/iter] then go to Step 13, otherwise go to Step 23.

Step 13) set genetic counter to zero (GeneticCounter=0) Step

14) select two individuals by using SUS methods.

Step 15) call crossover operator using equation (7) and (8), and

the parents are replaced with their better offsprings in main

population.

Step 16) call mutation operator using equation (9) and the new

better offspring take the place of its parents in main population.

Step 17) if number of individual in the new generation is equal

to number of individual in the current generation go to Step 18,

otherwise, go to Step 14.

Step 18) establish next generation with best individual in the

current and new generation and add one to genetic algorithm

counter (GeneticCounter++)

Step 19) if genetic algorithm counter is equal to number of

individual in the sub-population go to Step 20, otherwise go to

Step 14.

Step 20) for each particle, specify best personal position and

calculate the number of no improvements in it (pbesti and

pbestiCounter). Also, specify best global position and calculate

the number of no improvements in it (gbest and gbsetCounter).

Step 21) if (Etrain(gbest(iter)) <ε) then go to Step 28,

otherwise, go to Step 22.

Step 22) if the number of no improvements in the best global

position is greater than maximum allowed number

(gebestCounter>Maxgbest) then call random perturbation

(Pseudocode in Fig. 3)

Step 23) increase iteration counter (iter++).

Step 24) if iteration counter is greater than maximum allowed

number (iter>m) then go to Step 28, otherwise, go to Step 25.

Step 25) if the remaining for number of iteration divided by the

proposed cross validation strip length (iter/L) become zero go

to Step 27, otherwise, go to Step 2.

Step 26) if validation error of global position for the current

iteration is grater than pervious iteration (Eval(gbest(iter))> Eval

Int'l Conf. Data Mining | DMIN'11 | 251

(gbest(iter-1)) then increase overtraining counter (Tcounter++),

otherwise set it to zero (Tcounter =0).

Step 27) if overtraining counter is greater than maximum

allowed number (Tcounter>T) then go to step 28 (termination

because of overfitting), otherwise go to Step 2. Step 28) stop

the training.

3.9 Termination Criterion

 The algorithm simultaneous uses three criterions as

termination conditions. First termination condition is based on

training error. In this approach, at the end of each iteration t if

the error on the training pattern is less than ε the training

process will terminate (for the classification problems
210ε −=

for the approximation problems
610ε −=). Second, if number

of iteration becomes greater than a predefined number, the

training process will be terminated. Third, according to the

proposed cross validation method, if the algorithm meets the

over training condition, the training process will be terminated.

4 Experimental Studies

 In this section, a comparison between the performance of

HIOPGA and backpropagation algorithm (BP) with momentum

term on several well-known benchmark problems is presented.

The characteristics of these problems are summarized in Table

1, which show a considerable diversity in the number of

examples, attributes, and classes. The detailed description of

these problems can be obtained from the University of

California Irvine, Machine Learning Repository. For each

benchmark problem, entropy is calculated according to (10).

Where P(Ci) is the probability of class Ci in the data set,

determined by dividing the number of pattern of class Ci by the

total number of pattern in data set. Entropy of a data set is the

average amount of information needed to identify the class label

of a pattern in data set. In fact, entropy explores class

distribution information in its calculation and show impurity of

data set. It could considered as a criterion for difficulty of the

problems.

() ()()2logi ii
E P C P C= − ×∑ (10)

TABLE 1

CHARACTERISTICS OF BENCHMARK PROBLEMS

p
ro

b
le

m

Number of

E
n

tr
o

p
y

In
p

u
t

at
tr

ib
u

te
s

O
u

tp
u

t
cl

as
se

s

T
ra

in
in

g
 p

at
te

rn

V
al

id
at

io
n

p
at

te
rn

T
es

ti
n

g
 p

at
te

rn

Cancer 9 2 350 175 174 0.93

Card 51 2 345 173 172 0.99

Diabetes 8 2 348 192 192 0.93

Glass 9 6 107 54 53 2.18

Heart 35 2 460 230 230 0.99

Horse 58 3 182 91 91 1.32

Iris 4 3 75 38 37 1.58

Mushroom 125 2 4062 2031 2031 1

Thyroids 21 3 3600 1800 1800 0.45

4.1 Experimental Methodology

The proposed algorithm is implemented with Java programming

language and a personal computer with Intel(R) Pentiume (R)

CPU 2.66 GHz 2.68GHz, 32 Bits Windows 7 Ultimate

operating system and 1.50 GB installed memory (RAM) is

used to achieve all of the results. In both algorithm (HIOPGA

and BP) we consider 150 as maximum number of iteration and

observably both algorithm has less iteration to converge. The

metaheuristic and gradient-based algorithms are sensitive to the

value of their parameters. The parameters are the configurable

components of HIOPGA and BP. Parameter tuning may allow a

larger flexibility and robustness to the algorithm, but requires a

careful initialization. Those parameters may have a great

influence on the efficiency and effectiveness of the search. It is

not obvious to define a priori which parameter setting should be

used. The optimal values for the parameters depend mainly on

the problem and even the instance to deal with and on the

search time that the user wants to spend in solving the problem.

One main step of this research is fine parameter tuning of the

algorithm. To tune the parameters of each algorithm, by random

we selected three benchmark problems with different sizes and

only one parameter is modified at a time for each algorithm,

while the other are not changed. Then proper values of the

parameters determined through running the algorithm 15 times

over different values of the parameters and calculating average

of the objective function for these 15 runs. The criteria for

modifying parameters are the quality of solutions and CPU time

to find them. The final value for the parameters is as follows.

Initial NN weights (initial position of particles or xmin and xmax)

is [-1,1], the velocity interval is [-3,3], number of particles (np)

is 15, initial and final value for cognitive component are 5 and

1, respectively. Initial and final value for social component are

1 and 5. GA mutation probability (Pm) is 0.02 and crossover

probability (Pc) is 0.7. For the proposed cross validation

method, L and T are 5 and 3. In addition, the learning rate and

momentum term for BP are 0.1 and 0.9, respectively. The max

number of training epochs, i.e., m, for both algorithms is set to

150. One bias neuron with a fixed input +1 was connected to

the neurons of the hidden layers and output layers. The logistic

sigmoid function was used for the neurons in the hidden layers

and output layer.

4.2 Experimental Results

To reduce the effect of random parameter initialization on

prediction ability of the models, we run each model 100 times,

independently and take the average and standard deviation of

results in table 2. The BP needs much more time and iteration

to converge but less disperses solution. The reason for this

matter is the random essence of metaheuristic algorithm.

4.3 The Convergence Graph

Fig. 4(a)-4(i) represent number of iteration-testing error for

the best so far network from the beginning of the algorithms. As

these figures reveal, the proposed HIOPGA with doing big

jump in the testing space to find better solutions converge faster

than BP.

252 Int'l Conf. Data Mining | DMIN'11 |

5 Conclusion

 In this research, a hybrid algorithm based on particle swarm

optimization and genetic algorithm was presented. During

iteration of the proposed algorithm, when some NN (or

particles position) in the d-dimensional space cloud not be

improved through the IOPSO, a sub-population of such NNs is

established and be sent to the GA, to with utilizing the GA

crossover and mutation operators, the HIOPGA finds better NN

for replacing in the population. The comparison between the

proposed algorithm and standard BP with momentum term

reveals the superiority of the algorithm, however HIOPGA in

the final latter steps and tuning the final solution need more

iteration than BP. For example, in Cancer problem, the testing

error of the proposed algorithm in iteration 40 was 4.02 and 10

iterations later i.e. at the iteration 50 error decreased to 2.99,

but in the BP the testing error in iteration 79 is 3.21 and in the

iteration 80 is 3.

TABLE 2

PERFORMANCE OF HOIPGA ON NINE BENCHMARK PROBLEMS FOR DIFFERENT PARAMETER VALUES. ALL RESULTS WERE AVERAGED

OVER 50 INDEPENDENT RUNS

Name of
Model Accuracy on

Number of

Iteration
Average of

Training

Time(second) Problem Algorithm
Training Set Validation Set Test Set

Mean SD
Mean SD Mean SD Mean SD

Cancer
HOIPGA 98.23 1.13 97.21 1.26 97.01 1.22 50.06 7.23 1.43

BP 98.11 1.01 97.23 1.00 97.00 1.02 79.11 6.54 2.25

Card
HOIPGA 87.02 2.24 86.09 2.21 86.92 1.42 25.32 2.45 6.94

BP 87.12 1.89 87.09 1.64 86.85 1.33 45.75 2.32 12.38

Diabetes
HOIPGA 69.19 1.23 69.11 1.14 68.87 1.13 26.59 1.45 1.68

BP 68.99 0.98 68.87 1.09 68.54 0.95 45.11 1.40 2.81

Glass
HOIPGA 68.42 1.33 68.42 1.17 67.71 1.27 51.54 9.66 0.28

BP 68.11 1.24 68.09 1.12 67.11 1.14 84.23 7.78 0.46

Heart
HOIPGA 79.34 1.41 79.28 1.45 77.39 1.42 45.21 5.21 2.20

BP 78.98 1.20 78.89 1.07 77.02 1.15 59.75 3.98 2.91

Horse
HOIPGA 67.69 1.17 66.76 1.31 65.44 1.03 58.01 8.34 3.15

BP 67.06 0.97 66.80 0.93 64.99 0.80 67.56 6.11 3.69

Iris
HOIPGA 98.02 0.18 97.01 0.32 97.02 0.39 10.18 1.02 0.12

BP 98.12 0.02 97.21 0.19 97.01 0.18 30.51 0.87 0.34

Mushroom
HOIPGA 96.10 0.22 96.08 0.14 96.02 0.17 28.22 3.71 6.39

BP 96.15 0.05 96.07 0.09 96.00 0.08 42.14 2.65 9.45

Thyroids
HOIPGA 93.68 0.13 93.61 0.17 92.69 0.22 17.12 1.83 48.87

BP 93.48 0.21 93.52 0.24 92.46 0.21 25.37 1.02 69.97

Fig. 4. The best so far network iteration- testing error graph for the Benchmarking problems

Int'l Conf. Data Mining | DMIN'11 | 253

Future research will progress in two directions including

improving training time and prediction accuracy of the

proposed algorithm by modifying the final iteration of

algorithm or the architecture of NN. The model training time

or accuracy may be improved through incorporation gradient-

based local search methods with the proposed algorithm

especially at the final training iteration of the algorithm; also,

prediction accuracy of the algorithm could be improved by

using another metaheuristic to optimize NN architecture.

6 References

[1] M. Yaghini, M. M. Khoshraftar, M. Seyedabadi, “Predicting Passenger

Train Delays Using Neural Network,” The 4th International Seminar on

Railway Operations Modelling and Analysis (RAILROME 2011), Feb,

2011,vol.10, no.3, Juan, 1995,16–22.

[2] S. Kiranyaz, T. Ince, A. Yildirim, M. Gabbouj, “Evolutionary artificial

neural networks by multi-dimensional particle swarm optimization, “Neural

Networks, vol. 22, no. 10, December, 2009, pp. 1448-1462.

[3] M. Castellani, H. Rowlands, “Evolutionary Artificial Neural Network

Design and Training for woodveneer classification”, Engineering

Applications of Artificial Intelligence, vol. 22, 2009, pp. 732–741.

[4] E-G. Talbi, Metaheuristic: From Design to Implementation, University

of Lille – CNRS – INRIA, a John Wiley & sons, Inc., 2009

[5] R. Battiti and G. Tecchiolli, “Training neural nets with the reactive tabu

search”, IEEE Transaction on Neural Network, vol. 6, no. 5, Sept. 1995, pp.

1185–1200.

[6] R. S. Sexton, B. Alidaee, R. E. Dorsey, and J. D. Johnson, “Global

optimization for artificial neural networks: A tabu search application,”

European Journal of Operational Research, vol. 106, no. 2–3, April, 1998,

pp. 570–584.

[7] N. K. Treadgold and T. D. Gedeon, “Simulated annealing and weight

decay in adaptive learning: The SARPROP algorithm,” IEEE Transaction on

Neural Network., vol. 9, no. 4, Jul. 1998, pp. 662–668.

[8] S. Chalup and F. Maire, “A study on hill climbing algorithms for neural

network training,” in Proc. Congress on Evolutionary Computation, vol. 3,

1999, pp. 2014–2021.

[9] X. Yao, “Evolving Artificial Neural Network”, Proceedings of the IEEE,

vol. 87, no. 9, 1999,pp. 1423–1447.

[10] V. W. Porto, D. B. Fogel, L. J. Fogel, “Alternative neural network

training methods”, IEEE Expert ,vol. 10, no. 3, Juan, 1995, pp.16–22.

[11] M. Mandischer, “A comparison of evolution strategies and

backpropagation for neural network training,” Neurocomputing, vol.42, Jan,

2002, pp. 87–117.

[12] E. Alba, J. F. Chicano, “Training Neural Networks with GA Hybrid

Algorithms”, K. Deb (ed.), Proceedings of GECCO’04, Seattle, Washington,

LNCS 3102, 2004, pp. 852-863.

[13] P. Malinak, R. Jaksa, “Simultaneous Gradient and Evolutionary Neural

Network Weights Adaptation Methods,” IEEE Congress on Evolutionary

Computation (CEC), Sept, 2007, pp. 2665-2671.

[14] J. Kennedy, R. Eberhart, “Particle swarm optimization,” In Proc.

IEEE international conference on neural networks. vol. 4, Nov, 1995, pp.

1942-1948.

[15] A. P. Engelbrecht, F. V.D. Bergh, “Cooperative Learning in Neural

Networks using Particle Swarm Optimizers,” South African Computer

Journal, vol. 26, 2000, pp. 84-90.

[16] Mendes R., Cortez P., Rocha M., Neves J., “Particle Swarm for

Feedforward Neural Network Training,” IEEE, in Proc. International Joint

Conference on Neural Networks, 2002, pp. 1895-1899.

[17] V. G. Gudise, G. K. Venayagamoorthy, “Comparison of Particle

Swarm Optimization and Backpropagation as Training Algorithms for Neural

Networks, “IEEE Swarm Intelligence Symposium, April, 2003, pp.110-117.

[18] F. Zaho, Z. Ren, D. Yu, Y. Yang, “Application of An Improved

Particle Swarm Optimization Algorithm for Neural Network Training,”

International Conference on Neural Networks and Brain (ICNN&B '05),

Oct, 2005, pp.1693-1698.

[19] M. Carvalho, T. B. Ludermir, “Particle swarm optimization of neural

network architectures and weights,” In Proc. of the 7th international

conference on hybrid intelligent systems, Sept, 2007, pp. 336-339.

[20] B. Al-Kazemi , C. K. Mohan, “Training Feedforward Neural Networks

using Multi-Phase Particle Swarm Optimization”, in Proc. Ninth

International Conference on Neural Information Processing, vol. 5, 2002,

pp. 2615-2619.

[21] H. R. Tizhoosh, “Opposition-based learning: A new scheme for

machine intelligence,” in Proc. International Conference Computational

Intelligence Modeling Control and Automation, Vienna, Austria, vol. 1, Nov,

2005, pp. 695–701.

[22] L., Han, X. He, “A novel Opposition-based Particle Swarm

Optimization for Noisy Problems,” in Proc. Third International Conference

on Natural Computation (ICNC), IEEE Press, vol. 3,Aug, 2007, pp. 624 –

629.

[23] Z. Wu, Z. Ni, C. Zhang, L. Gu, “Opposition based comprehensive

learning particle swarm optimization”, in Proc. 3rd International Conference

on Intelligent System and Knowledge Engineering (ISKE), Nov, 2008, pp.

1013-1019.

[24] M. G. H. Omran, “Using Opposition-based Learning with Particle

Swarm Optimization and Barebones Differential Evolution,” Particle Swarm

Optimization, InTech Education and Publishing, 2009.

[25] C. Blum, K. Socha, “Training feed-forward neural networks with ant

colony optimization: An application to pattern classification”, Fifth

International Conference on Hybrid Intelligent Systems (HIS’05), 2005, pp.

233-238.

[26] X. Chen, J. Wang, D. Sun, J. Liang,”A Novel Hybrid Evolutionary

Algorithm Based on PSO and AFSA for Feedforward Neural Network

Training”, IEEE 4th International Conference on Wireless Communications,

Networking and Mobile Computing, 2008. WiCOM '08., Oct, 2008, pp.1-8.

[27] J. Yu, S.Wang, L. Xi, “Evolving artificial neural networks using an

improved PSO and DPSO,” Neurocomputing, vol.71, January, 2008, pp.

1054–106.

[28] A. Ratnaweera, K.Saman, H.C. Watson,”Self–organizing hierarchical

particle swarm optimizer with time–varing acceleration coefficients,” IEEE

Trans Evol Comput vol.8 (3), June, 2004, pp.240–255.

[29] M. Clerc, J. Kennedy, “The particle swarm: explosion, stability, and

convergence in a multi-dimensional complex space,” IEEE Transactions on

Evolutionary Computation, vol. 6, 2002, pp. 58-73.

[30] M. Lovbjerg, T. K. Rasmussen, T. Krink, “Hybrid particle swarm

optimiser with breeding and subpopulations,” In: Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO). San Francisco, CA,

July, 2001.

[31] N. Higashi, H. Iba, “Particle swarm optimization with Gaussian

mutation,” In: Proc. of the IEEE Swarm Intelligence Symp.

Indianapolis,April, 2003, pp. 72–79.

[32] L. Prechelt, “Automatic early stopping using cross validation:

Quantifying the criteria,” Neural Network, vol. 11, no. 4, Jun. 1998, pp. 761–

767

254 Int'l Conf. Data Mining | DMIN'11 |

