لایه مرزی: مفهومی بی‌نبی‌ای در پدیده‌های انتقال می‌باشد. لایه مرزی عبارت است از سیالی که تحت تأثیر گرما، اندازه حرکت و یا انتقال جرم ناشی از یک سطح مشترک قرار گرفته باید که این سطح مشترک می‌تواند ساکن یا متحرک باشد. به عنوان نمونه می‌توان به لایه‌های از سیال که در ترددیکی یک منبع گرما مانند رادیاتور قرار دارد، اشاره کرد. لایه‌های مشترک منبع گرم ناگهانی یا گرما به وسیله از تغییرات دما ایجاد می‌کند که به آن تغییر چگالی سیال است و موجب شروع چرخان هم‌رفت می‌شود. در علم دینامیک سیالات نیز پدیده‌هایی مانند نیروی مقاوم و جدايش چرخان به تغییرات در شکل و اندازه لایه مرزی سیال در اطراف جسم متحرک وابسته است.

به طور کلی سه نوع لایه مرزی سرعت(اندازه حرکت)، انتقال جرم و انتقال حرارت وجود دارد. البته در واقعیت ممکن است هر سه پدیده انتقال حرارت رخ دهد که بیشتر محاسبات و روابط حاکم را درپی دارد. برای بیان روابط ریاضی بین سه لایه مرزی می‌توان از اعداد مقدمه سرعت محلی u_0 حدود 0.99 سرعت در جریان آزاد اطراف لایه مرزی است، کمک کند.

سرعت محلی u_0 سرعت در جریان آزاد اطراف لایه مرزی است.

لایه مرزی سرعت:

$$\tau_s = \mu \frac{\partial u}{\partial y} \bigg|_{y=0}$$

1- شرایط عدم لغزش: سرعت ذرات مجاور سطح صفر است.
2- به علت وجود تنش برخی گرادیان سرعت در لایه مرزی بالایی کمتر می‌شود.
3- به فاصله عمودی ازسطح که این اثرات ادامه دارد δ که ضحامت لایه مرزی سرعت نام دارد.

$$\delta \rightarrow \frac{u(y)}{u_\infty} = 0.99$$

4- در این لایه سرعت u_0 که روز سطح است تا u_∞ که سرعت در جریان آزاد است تغییر می‌یابد.

![LaM.jpg](https://example.com/LaM.jpg)
5- یک اثر از تاثیرات لزجت در ارتباط با حرکت نسبی بین سیال روی سطح است.

6- یک منطقه مشخص از جریان که توسط تنش برشی و تغییرات سرعت ایجاد شده است.

7- وجود تنش برشی سطح، یک نیروی درگ ایجاد می‌کند.

\[F_D = \int_{A_S} \tau_s \, dA_s \]

لایه مرزی حرارتی:

1- مشابه لایه مزی سرعت با عبور از روی سطح چنانچه \(T_S = T_\infty \) نباید لایه مرزی حرارتی وجود می‌یابد.

2- در لبه لایه مرزی بروز می‌کند و دما برای با دمای سیال چریان آزاد می‌باشد.

3- در مجاورت سطح ذرات به دمای تعادل می‌رسند.

4- تبادل حرارت بین سطح و سیال انجام می‌شود و به لایه‌های بالایی یا چریان مثبت می‌شود که این امر موجب ترکیب ناپایداری در حالی می‌شود که در جریان ایجاد نماید.

5- ناحیه ای که گرادیان دما در سیال وجود دارد (بر اثر تفاوت دمایی) لایه مرزی حرارتی شناخته شده است.

6- ضخامت لایه مرزی حرارتی \(\delta \) نشان داده می‌شود که برای است با فاصله ای از جریان که شرط زیر برای برای بدست آن برقرار است:

\[\delta_I = \frac{T_S - T(y)}{T_S - T_\infty} = 0.99 \]

7- با افزایش فاصله از سطح به دلیل تبادل و نفوذ بیشتر حرارت به داخل جریان، ضخامت لایه مرزی افزایش می‌یابد.
معادله انرژی:

\[\rho c_p \left[u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right] = \lambda \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right] + \phi \]

\[\phi = \frac{\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)^2}{\mu} + 2 \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right) \]

\[\theta = \frac{T - T_\infty}{\Delta T} \quad v^* = \frac{v}{V} \quad u^* = \frac{u}{U} \quad y^* = \frac{y}{L} \quad x^* = \frac{x}{L} \]

\[\ddot{v} = v^* \sqrt{Re} \quad \ddot{y} = y^* \sqrt{Re} \]

\[u^* \frac{\partial \theta}{\partial x} + v^* \frac{\partial \theta}{\partial y} = - \frac{1}{\rho} \frac{\partial^2 \theta}{\partial y^2} + Ec \left(\frac{\partial u^*}{\partial y} \right)^2 \]

معادله بدون بعد لایه مرزی:

\[Re = \frac{\rho v L}{\mu} \quad Pr = \frac{\mu c_p}{\lambda} \quad Ec = \frac{v^2}{c_p \Delta T} \]

پارامتر های بی بعد بدست آمده:

\[* \text{Re} = \frac{v^*}{L} \quad * \text{Pr} = \frac{u^*/L}{T_\infty / \Delta T} \quad * \text{Ec} = \frac{v^*/T_\infty / \Delta T}{c_p / \Delta T} \]

که ترم آخر آن که همان ترم افت انرژی است قابل صرف نظر است.

به وسیله همین معادله بی بعد لایه مرزی می‌توان اعداد بی بعد را تعیین کرد که مهم‌ترین آنها عبارت است.

* Re = \frac{v^*}{L}
Pr = \frac{u^*/L}{T_\infty / \Delta T}
Ec = \frac{v^*/T_\infty / \Delta T}{c_p / \Delta T}

لایه مرزی حرارتی نسبت به لایه مرزی سرعت دارای شرایط مرزی منتفایت است.
اگر از انرژی پتانسیل صرف نظر کنیم، نرخ خالص انرژی که به همراه توده سیال از مرزهای حجم کنترل در جهت x عبور می‌کند برای است با:

\[E_{adv,x} - E_{adv,x+dx} = \rho u \left[e + \frac{1}{2} v^2 \right] dy - \left\{ \rho u \left[e + \frac{1}{2} v^2 \right] + \frac{\partial}{\partial x} \left[\rho u \left[e + \frac{1}{2} v^2 \right] \right] \right\} dx \]

\[= - \frac{\partial}{\partial x} \left[e + \frac{1}{2} v^2 \right] dx dy \]

نرخ خالص یاد محوت حرارت جریان سیال از مرزهای حجم کنترل در جهت x برای است با:

\[E_{adv,x} - E_{adv,x+dx} = \left[-k \frac{\partial T}{\partial x} \right] dy - \left[k \frac{\partial T}{\partial x} - \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) \right] dx \]

\[= \frac{\partial}{\partial x} \left[k \frac{\partial T}{\partial x} \right] dx dy \]

نرخ خالص کار انجام شده توسط سیال در جهت x برای است با:

\[W_{net} = (Xu) dx dy + \frac{\partial}{\partial x} \left[\left(\sigma_{xx} - p \right) u \right] dx dy + \frac{\partial}{\partial y} \left[\left(\tau_{yx} \right) u \right] dx dy \]

که نشان دهنده کار انجام شده توسط سیال حجمی، فشاری و لزجت است.

مشابها با توشتن معادله در راستای y، مجموع معادلات در راستای x و y عبارتند از:
معادله حرارت:

\[\frac{\partial}{\partial x} \left[e + \frac{1}{2} v^2 \right] - \frac{\partial}{\partial y} \left[e + \frac{1}{2} v^2 \right] + \frac{\partial}{\partial x} \left[k \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k \frac{\partial T}{\partial y} \right] \]

\[+ \left(X u + Y u \right) - \frac{\partial}{\partial x} \left(P u \right) - \frac{\partial}{\partial y} \left(P v \right) + \frac{\partial}{\partial x} \left(\sigma_{xx} u + \tau_{xy} v \right) \]

\[+ \frac{\partial}{\partial y} \left(\tau_{yx} u + \sigma_{yy} v \right) + q = 0 \]

معادله بقای جرم:

\[\rho u \frac{\partial i}{\partial x} + \rho v \frac{\partial i}{\partial y} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \left(u \frac{\partial P}{\partial x} + v \frac{\partial P}{\partial y} \right) + \mu \phi + q \]

معادله بقای خطی مومنتمن:

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \]

معادله انتزایی:

\[\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = - \frac{\partial P}{\partial x} + \frac{\partial^2 u}{\partial y^2} \]

\[\rho c \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \frac{\partial^2 T}{\partial y^2} + \mu \frac{\partial^2 u}{\partial y^2} + q \]

لاهی مرزی حرارتی گذرا روی صفحات زبر

لوریه و فربر از دانشگاه ریو برزیل لاهی مرزی حرارتی گذار روی صفحه زبر را مورد مطالعه قرار دادند و سپس نتایج را با صفحه صاف مقایسه نمودند.

مشخصه های لاهی مرزی محلی، سرعت و دمای اصطکاکی، ازتکاکی و دراپری پروفیل های سرعت و دما با متغیر زمان و زمان حرارتی به سرعت سرعت ناپایا را تغییر دادند.

هدف مطالع این است که رفتار عدد استنتون ناپایا را با تغییر دمای دیواره مشاهده نمایند.

یکی از روشهای یافتن تغییرات ناپایایی دما روش‌های سنتی است در این مطالعه پاسخ لاهی سطحی داخلي به یک فلاکس حرارتی منتقل شده به دیواره که به صورت تناوبی، گام به گام است بررسی شده و که در این شرایط سرعت اصطکاکی ثابت مانده و با دمای اصطکاکی با زمان مانند عدد استنتون تغییر می‌کند؛ در زمانهای مختلف تنش برشی دیواره ثابت است اگر چه فلاکس حرارتی دیواره با زمان تغییر می‌کند مانند دیواره و دمای اصطکاکی خطی تر در اینجا می‌سیرد و توسط انتیشیت و آل‌سامی معرفی شده است.
عدم قطعیت در ارائه مفهوم فیزیکی خطای اصلی منجر به مخالفتهایی شده است که گاهی اصل و طبیعت آن را خدشه دار نموده است. این مسئله با معرفی دو پارامتر دیگر پیچیده تر شده است: ارتقاء جابجایی برای سرعت و دما.

شکل 1- الگوی در نظر گرفته شده برای سطح زیر

فرمول ها:

\[\text{مومنتوم در جهت } x \text{ و نیز } \text{پیوستگی} \]

معادله انتقال حرارت 9 و 10 در فشارهای مختلف مقدار خطای اصلی یکی است.

جکسون را با معادله 6 بست اوجد که یک تحلیل فیزیکی خوب برای آن است.

های بدست آمده در صفحات زیر و صاف یکی نیست.

عدد استنونت تجهیزات بکار رفته در این آزمایش:

1- تونل باد حرارتی به‌طور مربوط به شرکت توربوئیک مکانیک برای بیش از 1000 ثانیه فلاکس حرارتی ثابت، بعد از آن برای بیشتر از 1000 ثانیه عمل حرارت متوقف شد. برای هر رابین باد، این چرخه تکرار می‌شود.

آزمایشگاه تهویه صورت می‌گرفت و دما ثابت نگه داشته شد، که دمای کاری 20 سانتی‌گراد بوده، ابزار اندازه‌گیری سیال شامل

1. سانتی‌گراد بوده، ابزار اندازه‌گیری سیال شامل

برای سرعت با استفاده از دانکن سرعت با لوله پیتتوت انجام شده، پروفایل‌های دما

در جدول 2 خواص جریان در قسمت آزمایش آمده که دلتا ۱ ضخامت جابجایی لاشه مزی، دلتا ۲ ضخامت مومنتوم است.

شکل‌های ۴ و ۵ پروفیل های عرضی و خالص سرعت را نشان می‌دهد.

شکل ۶ خطای اصلی

شکل ۷ ارزیابی دما برای لاشه مزی آشفته

شکل ۸ ضخامت آنتالپی لاشه مزی
برای زمان کمتر از 10000 ثانیه ضخامت آنتالپی زبر بیشتر و برای مقادیر بیشتر از آن تا 20000، رفتار آن بر عكس است.

برای تخمین تأثیر نیروی بویانس و پایداری سیال، عدد بالک ریچاردسون را استفاده می‌کنیم فرمول 40

شکل 11، خطای اصلی در لایه مرزی حرارتی است.

شکل 12 دمای اصطکاک برای دو نوع سطح

رفتار عدد استنتون معادله 42

که در شرایط ایزوترمال (هم دما) برای سطح زبر معادله 43 عدد استنتون، توسط دیبری و سابرسکی برای سطح صاف معادله 44 عدد استنتون توسط کاپز و کرافورد

شکل 13 رفتار عدد استنتون در سطح زبر و صاف

نتایج

متد ژوبرت و پری در این شرایط خوب جواب میدهند، و میتوان برای ارزیابی فللاکس حرارتی مورد استفاده قرار داد.

ارتفاع جابجایی دما به یک مقدار ثابت میرسد بعد از مدتی کوتاه، این مقدار ثابت با ارتقاء جابجایی سرعت تفاوت زیادی دارد که بخاطر ارتفاع جایگاهی دما به یک مقدار ثابت میرسد بعد از مدتی کوتاه، این مقدار ثابت با ارتقاء جابجایی سرعت تفاوت زیادی دارد که بخاطر یک مقدار ثابت میرسد بعد از مدتی کوتاه، این مقدار ثابت با ارتقاء جابجایی سرعت تفاوت زیادی دارد که بخاطر یک مقدار ثابت میرسد بعد از مدتی کوتاه، این مقدار ثابت با ارتقاء جابجایی سرعت مدلی هاست.