
Computers & Fluids 114 (2015) 232–241
Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid
Numerical study of electroosmotic micropump using Lattice Boltzmann
method
http://dx.doi.org/10.1016/j.compfluid.2015.03.013
0045-7930/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +98 (21) 77 240206; fax: +98 (21) 77 24 04 88.
E-mail addresses: shderakhshan@iust.ac.ir (S. Derakhshan), i_adibi@mecheng.

iust.ac.ir (I. Adibi), sarrafha92@mecheng.iust.ac.ir (H. Sarrafha).
Shahram Derakhshan ⇑, Iman Adibi, H. Sarrafha
School of Mechanical Engineering, Iran University of Science & Technology, Narmak, 16846 Tehran, Iran

a r t i c l e i n f o
Article history:
Received 26 January 2014
Received in revised form 24 November 2014
Accepted 16 March 2015
Available online 23 March 2015

Keywords:
Electroosmotic
Lattice Boltzmann
Thermodynamic efficiency
Joule heating
a b s t r a c t

In the present study, the effects of the Joule heating and viscous dissipation on the electroosmotic flow
pattern has been investigated using the coupled momentum, Poisson–Boltzmann and energy equations
by the Lattice Boltzmann method. The main objective of this research was to study the effects of tempera-
ture variations caused by the dissipative terms on the thermodynamic efficiency of electroosmotic
pumps. The results showed that the Joule heating affects temperature-dependent properties via changing
the temperature distribution of the micro channel. Meanwhile, it was observed that the thermodynamic
efficiency predicted by the isothermal model, deviated substantially from that predicted by the non-
isothermal model when the Joule heating is significant.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Clearly electroosmotic mechanism is rapidly developing and it
has become a powerful method for fluid manipulation in microsys-
tems within the past decades. Nowadays, electroosmotic method is
widely used as an elegant mechanism to generate flow in micro-
scale laboratories which are called Lan-On-A-Chip. Unlike the con-
ventional pressure driven micropumps, known as displacement
micropumps, in which the manufacturing process is daunting
due to their complicated structure, the dynamic micropumps like
electroosmotic micropumps, have featured simple structure.
These micropumps generate continuous pulse free flows with con-
siderable flow rates [1–6].

A majority of solids, produce an electric double layer, known as
EDL, when are in contact to either weak or strong electrolyte solu-
tions. Counter ions from the bulk liquid are attached to the surface
coating these solid charges. On the other hand, Dissolved co-ions
are rejected from the solid. Actually, EDL is a high capacitance
charged region of ions at the liquid/solid interface. The layer of
immobile counter-ions immediately next to the charged surface
is called the Stern layer. The outer, diffuse part of the layer is called
the Gouy–Champman layer forming a net positive region of ions
that span a distance on the order of the Debye length of the solu-
tion. If an electric field is applied tangentially along the surface,
ions move in response to the field dragging surrounding liquid
with them. As a result of this ion drag, the fluid is drawn by the
ions and therefore it flows tangent to the wall [7].

The electroosmotic flow was firstly explored about two cen-
turies ago [8]. The new theories related to electroosmotic flow
can be traced back to Burgreen and Nakache, who theoretically
studied the electrokinetic flow in ultra-capillary slits [9]. Rice
and Whitehead [10] analyzed electrokinetic pressure driven flow
in a narrow cylindrical capillary, assuming low zeta potentials
and Debye–Huckel linearization. Later, Levine et al. extended their
model for high zeta potentials [11].

Santiago [12] predicted that the ideal electroosmotic flow
would only be observed for low Reynolds numbers steady flows.
Subsequently, Dutta and Beskok obtained analytical solutions of
unsteady electroosmotic flows, proving Santiago’s results [13].
Yang and Li developed a numerical algorithm based on Debye–
Huckel Linearization and studied electrokinetic effects in pressure
driven liquid flows [14]. There have been numerous studies on
numerical electroosmotic flow simulation using classic CFD meth-
ods since then.

Within the past decade, a mesoscopic static-based method,
known as Lattice Boltzmann Method (LBM), has been developed
to simulate EOF in Microsystems [15–22]. Benzi, Succi, and
Vergassola reviewed the lattice Boltzman equation theories and
applications in 1992 [23]. In their study, they present a compre-
hensive discussion on lattice Boltzman equation development from
lattice gas dynamics as well as different applications of lattice
Boltzman model for various flow conditions. Wang et al. presented
a Lattice Poisson–Boltzmann Method (LPBM) for solving EOF prob-
lems in microchannels, which was a combination of Lattice Poisson
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Fig. 1. Schematic of the model problem of a two-dimensional microchannel
between two plates with constant wall temperature.
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Method (LPM) and Lattice Boltzmann Method (LBM) [24]. The
model simultaneously solves non-linear Poisson–Boltzmann equa-
tion for electric potential distribution as well as solving simplified
BGK-Boltzmann equation in order to solve the fluid flow field.
Subsequently, similar as the external force term treatment in lat-
tice BGK method, they presented a thermal evolution equation
with generalized heat source term in their latter work [25].

Unlike the hydrodynamic features, the study of thermal effects
and heat transfer in an electroosmosis pump is a new topic.
Moreover, majority of the available literature is mainly focused
specifically on thermal aspects them, i.e., temperature distribution
or the rate of heat transfer [1,26–28]. However, it should be consid-
ered that physical properties, including zeta potential, viscosity,
electric permittivity, thermal conductivity, and electric conductiv-
ity also depend on temperature [22,29–31]. As a consequence,
velocity distribution and power term are affected by temperature
variations in a microchannel. Temperature variations are gener-
ated by both internal heat sources like viscous dissipation and
Joule heating, a phenomenon that arises from applied electric field
and fluid electrical resistivity, as well as external thermal condi-
tions [25,31,32]. Mala et al. investigated the basic structure of a
thermal field in a microchannel in their earlier attempt [33].
Subsequently, other researchers studied typical thermal problems,
e.g., the effects of Joule heating and viscous dissipation [29,34–36].
Chen and Santiago studied the thermodynamic efficiency of a
micropump analytically and obtained the maximum thermody-
namic efficiency as a function of concentration [37]. Additionally,
they illustrated the importance of each and every power term in
energy balance equation including the Joule heating, the viscous
dissipation, and the pressure work as functions of concentration.
However, the effect of temperature variations on temperature
dependent physical properties was neglected in their study.

Tang et al. considered all the physical properties as functions of
temperature [29,35]. However, their numerical research focuses on
the structure of temperature field and the effects of temperature-
dependent properties are examined implicitly. Since the effect of
temperature variation on physical properties is not negligible, sev-
eral researches have been conducted to study the effect of the
dissipative terms like Joule heating on the velocity profile
[22,24–31]. Sinton et al. explained the non-plug-like electroos-
motic flow as a possible result of Joule heating [39]. Guo et al. pro-
posed a finite-difference-based Lattice Boltzmann algorithm for
electroosmotic flows where the Joule heating effect was considered
[22]. In their attempt the effects of Joule heating on temperature
distribution and velocity profile is examined. Kwak et al. studied
the possibility of thermal control of EOF in a microchannel [31].
They obtained a non-plug-like EOF by implementing non-uniform
wall temperature. However, they neglected the dissipative terms
assuming a low electric field.

To the authors’ best knowledge, none of the previous studies
present a comprehensive study in which the dependency of all
the physical properties on temperature variation and dissipative
terms are simultaneously considered to evaluate the power terms
and thermodynamic efficiency. Hence, the aim of the present
attempt is to investigate the effects of temperature variations,
caused by the dissipative terms, on thermodynamic efficiency of
an electroosmotic pump via Lattice Boltzmann method, in this
study, the spirit of the model developed by Wang et al. [24,25] is
borrowed. The method of applying thermal boundary conditions
and solving energy equation is developed using the method pre-
sented by Annunziata D’Orazio and Sauro Succi in their paper,
which is about simulating thermal channel flow by means of lattice
Boltzman method with new boundary conditions [40]. The primary
objective is to introduce appropriate relations to modify thermody-
namic efficiency as well as power terms deviated by the isothermal
assumption. In other words, neglecting the energy equation and
the temperature-dependent properties, the electroosmotic flow is
simulated isothermally, and then the results can be modified by
correlation factors in order to obtain the real power terms and
thermodynamic efficiency.
2. Model description

An electroosmotic flow in a straight two-dimensional
microchannel between two parallel walls is shown in Fig. 1. The
channel dimensions are l and h in x and y directions, respectively.
An electric potential difference is applied between inlet and outlet.
The walls are kept at a uniform temperature distribution, Tw. A
symmetric dilute 1 mM KCl solution fills the channel and the sur-
faces of the horizontal planes which are in contact with the ionized
solution are charged with a zeta potential f.

2.1. Governing equations

Generally, the following assumptions are considered in mathe-
matical models for electrokinetic transport: (i) the system is in
chemical and dynamic equilibrium; (ii) the transport process is
in steady state; (iii) the ions in the Stern layer are rigidly attached
to the surfaces and they have no contribution to the bulk ionic cur-
rent; (iv) the flow is slow enough that the ion convection effect is
negligible; (v) the bulk ionic concentration is not too high (<1 mol/
l) or not too low (the Debye length is smaller than ten times the
channel width), therefore the Poisson–Boltzmann (PB) model is
still applicable; (vi) no other chemical reactions occur at surfaces
except for chemical adsorption and dissociation [38].
Furthermore, the electrolyte is treated as a continuum
Newtonian fluid. Considering a flow over a non-conducting sta-
tionary surface and under the condition of moderate ionic concen-
tration, the ion transport is described by the weakly coupled
Poisson–Boltzmann model instead of the highly coupled Poisson–
Nernst–Plank model [39]. Therefore, in this study, the governing
equations including continuity, momentum conservation,
Poisson–Boltzmann and energy equations are obtained considering
the aforementioned assumptions.

The driving force of an EOF is originated from the interactions
between the net charge density within the EDL region and the
applied external electric field. By assuming that the electrolyte
solution is incompressible and the density fluctuation caused by
temperature variations is negligible, the motion of the fluid is gov-
erned by the Navier–Stokes equations given as [22]:

@q
@t
þr � ðquÞ ¼ 0; ð1Þ

@ðquÞ
@t
þ u � rðquÞ ¼ �rpþr � ½lrðquÞ� þ qeE; ð2Þ

where u and p represent flow velocity and pressure, respectively.
Although the solution density, q, is assumed to be constant, the
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Fig. 2. Deviation of the flow rate relative to the previous case versus increasing
number of grid lattices.
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Fig. 3. Flow velocity versus channel height for different number of grid lattices.

Fig. 4. Wall potential distribution in the middle of the channel acquired by
analytical (solid line) and numerical solutions (points) for h = 2.5 � 10�7 m.
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shear viscosity, l ¼ lðTÞ, is assumed to be dependent on local tem-
perature. E represents the total electric field strength. Since in elec-
troosmotic flow, the induced electric potential is usually much
weaker than the applied external potential, E could be approxi-
mated as the applied external potential [22]. To determine the
parameter qe which stands for the net charge density, the
Poisson–Boltzmann equation needs to be solved.

The EDL is formed as a result of the interaction of the ionized
solution with the charged solid surfaces. The EDL theory relates
the electrostatic potential and the distribution of co-ions and coun-
ter-ions in the bulk solution by the Poisson equation [41].

According to the EDL theory, the electrostatic potential and the
distribution of co-ions and counter-ions in the bulk solution are
related by the Poisson equation as follows:

qe ¼ �r � ðeeorwÞ; ð3Þ

where w is the electrical potential, e is the dimensionless dielectric
constant of the solution, and e0 is the permittivity of a vacuum.
According to the classical EDL theory, the equilibrium Boltzmann
distribution equation is used to describe the ionic number concen-
tration. The net charge density distribution is expressed as the sum
of all ions in the solution [42]. In this study, since the electrolyte
was assumed to be symmetric, the charge density can be given by:

qe ¼ �2en1Z sinh
eZ

KBT
w

� �
; ð4Þ

where n1 is the bulk ionic number concentration, Z, the valence of
the ions, e, the absolute value of one proton charge, KB, the
Boltzmann constant, and T, the absolute temperature.
Substituting Eq. (4) into Eq. (3) results in the nonlinear Poisson–
Boltzmann equation for the electric potential in a dilute electrolyte
solution:

r � ðee0rwÞ ¼ 2en1Z sinh
eZ

KBT
w

� �
: ð5Þ

It is known that the Joule heating is generated when an electric
field is applied across conductive liquids. Such Joule heating not
only causes temperature increase but also creates temperature
gradient [35]. Assuming the compression work is negligible, the
energy equation can be written as follows [22]:

qcp
@T
@t
þ u � rT

� �
¼ r � ðkrTÞ þ _q; ð6Þ

where the specific heat capacity, cp, is assumed to be constant, but
the thermal conductivity l ¼ lðTÞ of the electrolyte solution is
assumed to be temperature dependent; _q represents the dissipation
terms including the Joule heating’s effect and viscous dissipation
per unit volume given as follows:

_q ¼ rE2 þU; ð7Þ

where r ¼ rðTÞ is the electrical conductivity of the fluid [31] and
the viscous dissipation is estimated as [25]:

U ¼ l @u
@y

� �2

: ð8Þ

The concentration of electrolyte solution used in microfluidic
devices is generally dilute so often; therefore, the properties of
these solutions are almost the same as those of pure water [31].
The viscosity of pure water decreases as the temperature increases.
Its functional relation is given as follows [29]:

l ¼ 2:761� 10�6 exp þ1713
T

� �
; ð9Þ

The thermal conductivity and permittivity of pure water are
also functions of temperature which are given as follows [22]:

k ¼ 0:61þ 0:0012ðT � 298Þ; ð10Þ

er ¼ 305:7 exp � T
219

� �
: ð11Þ



Fig. 5. Wall potential distribution in the middle of the channel acquired by
analytical (solid line) and numerical solutions (points) for h = 10�6 m.

Fig. 6. Velocity profile in the middle of the channel acquired by analytical (solid
line) and numerical solutions (points) for h = 2.5 � 10�7 m.

Fig. 7. Velocity profile in the middle of the channel acquired by analytical (solid
line) and numerical solutions (points) for h = 10�6 m.
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As the density and heat capacity of water are not temperature
dependent, they are assumed to be constant [31].

The electric conductivity of the 1 mM KCl solution is expressed
as [22]:

r ¼ 0:01264ð1þ 0:025ðT � 298ÞÞ: ð12Þ

For the zeta potential, a linear function can be used [30]:

f ¼ �0:00044T � 0:0782: ð13Þ

Additionally, the parameter Ju ¼ rh2E2

kT , referred to as Joule num-
ber in this study, reflects the importance of Joule heating, where r
and k are estimated at the reference temperature T0 ¼ 298 k.

2.2. Numerical method

LBM originated from Lattice Gas Cellular Automata (LGCA), is a
numerical scheme used in computational fluid dynamics. The
method is generally used to simulate fluid flow across a regular
grid inside the flow domain [43].

In this study, the D2Q9 Lattice Boltzmann model for single
time BGK relaxation collision operator is used to solve the
Navier–Stokes equation for fluid flow [44]:

f iðxþ Dx; t þ DtÞ ¼ f iðx; tÞ 1� 1
sv

� �
þ 1

sv
f eq

i ðx; tÞ: ð14Þ

were the local equilibrium distribution function, f eq
i , is defined as:

f eq
i ¼ wiqðx;tÞ 1þ ci � u

c2
s
þ 1

2
ðci � uÞ2

c4
s
� 1

2
u2

c2
s

" #
; ð15Þ

where

wi ¼

4
9 i ¼ 0
1
9 i ¼ 1;2;3;4
1

36 i ¼ 5;6;7;8;

8><
>: ð16Þ

ci ¼
ð0;0Þ i ¼ 0
ðcos hi; sin hiÞc i ¼ 1;2;3;4 hi ¼ ði� 1Þp=2ffiffiffi

2
p
ðcos hi; sin hiÞc i ¼ 5;6;7;8 hi ¼ ði� 1Þp=2þ p=4

8><
>: ;ð17Þ

and:

sv ¼ 3t
Dt
Dx2 þ 0:5; ð18Þ

where sv represents the viscosity-based dimensionless relaxation
time, t represents the kinematic viscosity, Dx is the lattice constant,
and Dt is the time step defined as Dt ¼ Dx=c. For gas flow, the
parameter c takes the value of real sound speed, while for incom-
pressible flow, c can take any positive value theoretically, in a
way that the value of sv results within the interval (0.5,2) [26]. It
is necessary that the relaxation time is within this range; otherwise
the predicted results deviate from the real results definitely [47,48].

After evolving on the discrete Lattices, the density and velocity
are calculated as follows:

q ¼
X

i

f i; ð19Þ

qu ¼
X

i

f ici: ð20Þ
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Fig. 9. Viscosity distribution across the channel at different Joule numbers for the
electroosmotic flow.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0.0 0.5 1.0
y/H

h*=52.14,Ju=0.042 (A)

h*=104.27,Ju=0.169 (B)

h*=156.41,Ju=0.381 (C)

Fig. 10. Electric conductivity distribution across the channel at different Joule
numbers for the electroosmotic flow.

236 S. Derakhshan et al. / Computers & Fluids 114 (2015) 232–241
However, the velocity requires to be modified due to the
presence of the external force. Newton’s second law of motion
states that:

F ¼ ma ¼ m
du
dt
; ð21Þ

where a and u are acceleration and velocity vectors, respectively.
Then,

Du ¼ svF
q
: ð22Þ

The velocity should be modified by Du calculating equilibrium
distribution functions only, ueq ¼ uþ Du [49].
Some efforts [50–52] have been made to apply the LBM to solve
the Poisson equation [53]. Using the same approach, Eq. (5) is
rewritten using an expanded time dependent term as follows:

@w
@t
¼ r � ðee0rwÞ þ grhsðr;w; tÞ; ð23Þ

where

grhs ¼
X

eZiCi1 exp � eZi

TKB
w

� �
; ð24Þ

illustrates the negative right hand side term of the original Poisson–
Boltzmann equation. The solution of Eq. (5) is the steady solution of
Eq. (23). The evolution equation for the electrical potential on the
two dimensional discrete lattices can then be written as [42]:

giðr þ Dr; t þ DtÞ � giðr; tÞ ¼
1
sg
½giðr; tÞ � geq

i ðr; tÞ�

þ 1� 0:5
sg

� �
Dtgwi

grhs

ee0

� �
; ð25Þ

where

geq
i ¼ �wiw; ð26Þ

with

�wi ¼
0 i ¼ 0
1=6 i ¼ 1;2;3;4
1=12 i ¼ 5;6;7;8:

8><
>: ð27Þ

And the time step is:

Dtg ¼
Dx
c0
; ð28Þ

where c0 is a pseudo sound speed in the potential field. The dimen-
sionless relaxation time is:

sg ¼
3Dtg

2Dx2 þ 0:5: ð29Þ

After evolving on the discrete Lattices, the macroscopic electri-
cal potential can be determined using the following equation:

w ¼
X

i

ðgi þ 0:5DtggrhswiÞ: ð30Þ

In this study, for evaluating equation of heat transfer, the Peng’s
implement [48] is applied. According to his simplified model, the
evolution function for the heat transfer without source term is:

hiðr þ ciDt; t þ DtÞ ¼ hiðr; tÞ 1� 1
se

� �
þ 1

se
heq

i : ð31Þ

To simulate the evolution function, for heat transfer by general-
ized heat source term, which can involve joule heating, viscous
dissipation, pressure compression and external heat source, the
model presented by Wang et al. could be used [25]. Therefore
the evolution equation is generally given as:

hiðr þ ciDt; t þ DtÞ ¼ hiðr; tÞ 1� 1
se

� �
þ 1

se
heq

i

þwi 1� 0:5
1
se

� �
_q

qcp
; ð32Þ

where the equilibrium distribution is:

heq
i ¼

2
3 T u2

c2 i ¼ 0

1
9 T 3

2þ 3
2

ci �u
c2 þ 9

2
ci �u
c2 � 3

2
u2

c2

h i
i ¼ 1;2;3;4

1
36 T 3þ 3 ci �u

c2 þ 9
2

ci �u
c2 � 3

2
u2

c2

h i
i ¼ 5;6;7;8

8>>><
>>>:

: ð33Þ

With:
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wi ¼

2
3 i ¼ 0
1
9 i ¼ 1;2;3;4
1

36 i ¼ 5;6;7;8

8><
>: ; ð34Þ

and:

se ¼
3
2

aDt
Dx2 þ 0:5; ð35Þ

where se is the dimensionless relaxation time for energy transport
and a is the thermal diffusion. The temperature is then determined
by:

T ¼
X

i

hi þ
Dt
2

_q
qcp

: ð36Þ
2.3. Boundary conditions

The boundary conditions for the momentum equation are the
bounce-back model for the fluid–solid interaction on the wall sur-
faces and periodic conditions at the inlet and outlet. For the
Poisson–Boltzmann equation, the Dirichlet boundary condition is
implemented on the wall surfaces and the Neumann condition at
the inlet and outlet sections [24]. Finally, for heat transfer equa-
tion, the boundary condition on the wall surfaces used in
Fig. 12. Isothermal dimensionless local velocity versu
D’Orazio’s approach that is consistent with the second-order accu-
rate boundary treatment for fluid flow is followed [40]. In this
approach, the incoming unknown populations were also assumed
to be at equilibrium distribution at a temperature T0. The value
of T0 was determined by the given constraints, which is the tem-
perature in a Dirichlet boundary [45,46]. The boundary conditions
at the inlet and outlet were assumed to be periodic.

2.4. Analytical solutions

The approximate analytical solutions for potential distribution
and the velocity profile are acquired in this section by solving
the coupled hydrodynamic and electro hydrodynamic equations
describing the flow and electric fields. These solutions are used
later to validate the acquired numerical results. Considering Eqs.
(1)–(4) as the governing equation set and assuming the properties
to be temperature-independent as well as the flow to be incom-
pressible, the governing equations take the following forms:

ru ¼ 0; ð37Þ

q
@u
@t
þ qu � rðuÞ ¼ �rP þ mr2uþ F; ð38Þ

r2w ¼
2en1Z sinh eZ

KBT w
� �

ee0
; ð39Þ

qe ¼ �ee0r2w: ð40Þ

If a channel similar to the channel shown in Fig. 1 is considered
with h ¼ 2H, considering the following boundary conditions:

y ¼ 0 :
dw
dy
¼ 0; and ð41Þ

y ¼ H : w ¼ f; ð42Þ

then the analytical potential distribution is acquired as
follows [41]:

w ¼ 4f
a

tanh�1 tanh
a
4

� �
expðjy� jhÞ

h i
ð43Þ

in which, a ¼ zef=kBT and j�1 represents the EDL thickness.
Similarly, if the following boundary conditions are assumed:
s the channel height for different joule numbers.



Fig. 13. Non-isothermal dimensionless local velocity versus the channel height for different joule numbers.

Fig. 14. Comparison of the isothermal average velocity and the non-isothermal
(real) average velocity versus the Joule number. The solid line represents the
isothermal model, and the dashed line represents the non-isothermal model.
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y ¼ 0 :
duðyÞ

dy
¼ 0; ð44Þ

y ¼ H : uðyÞ ¼ 0; ð45Þ

then the analytical velocity profile is acquired as follows [41]:

uðyÞ ¼ � ee0Exf
l

1� coshðjyÞ
coshðjHÞ

� �
: ð46Þ
3. Results and discussion

In the present research, the dissipative terms influence on an
electroosmotic driven flow in a microchannel is studied. The flow
is considered both pressure and electroosmotic driven in order to
obtain the pressure work. The numerical results were obtained at
a uniform given wall reference temperature, Tw ¼ 303 K, and an
externally applied electric field along x direction, E ¼ 50 kV/mm,
is assumed to be constant. The dimensionless parameter h� is
defined to be the ratio of the channel width to Debye length and
l0, r0 and k0 are viscosity, electric conductivity and thermal
conductivity at wall temperature, respectively. Moreover,
T� ¼ ðT � TwÞ=Tw is defined as the dimensionless temperature.
3.1. Investigating grid independency

Since most of the flow variations happen within the EDL, pro-
viding this region with enough number of lattices is necessary
for acquiring accurate results. To verify the grid independency of
the results, a 1 lm height channel subjected to a 1000 V/m electric
field is considered in which a KCl solution with 0.1 mM concentra-
tion at constant temperature, 303 K, flows. Figs. 2 and 3 show the
curves of flow rate deviations versus increasing number of lattices
in debye length and the flow velocity versus the channel height,
respectively. As shown in the figures, it is shown that developing
8 lattices in the EDL region provides the results with appropriate
accuracy, which is 0.7% difference from the 7 lattices case.

Additionally, since all the numerical results presented in this
study were obtained for small Reynolds numbers, maximally in
order of unity, where the inertial force are negligible and the veloc-
ity field is insensitive to the Reynolds number, the results are only
shown in the middle of the channel. In this study, the fluid is
manipulated in different channel sizes, and the applied electric
field and the electrolyte molar concentration are always constant.
In other words, the variation of Joule number is always imple-
mented by the channel width. However, the variations of the afore-
mentioned Joule number due to the temperature-dependent
properties are inevitable.
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3.2. Validation of the results

For the purpose of validating the acquired results, analytical
solutions of velocity profile and potential distribution presented
in Section 2.4 are used. Figs. 4–7 show wall potential distribution
as well as velocity profile in a channel with 2 h height. The curves
are plotted between the wall and the middle of the channel. KCl
solution with 10�4 mole/lit concentration at 303 k temperature
flows through the channel and an E = 1000 V/m electric field is
applied. For Figs. 4 and 5, half of the channel height equals
h = 2.5 � 10�7 m and for Figs. 6 and 7 half of the channel height
equals h = 10�6 m. As shown in the figures, analytical and numeri-
cal solutions are in good agreement, which validates the acquired
results. Also, it is clear from the figures that as the channels height
increases, the error originated from analytical solution approx-
imation decreases and the curves are more fit in this state.
3.3. Simulation results

Since the Joule heating is an inevitable volumetric heating that
results when an electric field is applied across conducting material
such as the electrolyte in our case, the isothermal assumption is
questionable for electrical kinetic flows. The Joule heating may
produce a significant temperature gradient within the flow,
especially when the applied electric voltage is high. For nonzero
Joule numbers, the temperature profile takes a parabolic shape
and the peak occurs at the channel center. In addition, the magni-
tude of the peak temperature increases as the Joule number
increases. Fig. 8 shows the steady dimensionless temperature dis-
tribution for various channel sizes. As it can be seen, with the
increase of the channel width, the Joule number increases.
Hence, the magnitude of the peak dimensionless temperature
increases as the width of the channel increases.

Moreover, the properties of the electrolyte, including the viscos-
ity, the thermal conductivity and the electric conductivity are func-
tions of the temperature. Therefore, they depend on the Joule
number. The corresponding dimensionless viscosity, electric con-
ductivity and thermal conductivity distributions are shown in
Figs. 9–11 respectively.

In addition, the Joule heating effect affects the velocity profile in
the channel through the temperature-dependent properties,
because, for an electroosmotic driven flow, the flow near the wall
is predominantly driven by the electroosmotic force, while the flow
in the center region of the channel is driven by the fluid near the
walls through the viscous drag force. Hence, the velocity in the
center region decreases as a result of the Joule heating effect.
Figs. 12 and 13 show isothermal and non-isothermal dimension-
less velocity profiles for different joule numbers, respectively.
Also, a comparison between the average velocities for the isother-
mal and the real non-isothermal models is shown in Fig. 14. As it
can be seen, as the channel width increases, the mean velocity in
isothermal model reaches a plateau, while the non-isothermal
model predicts a maximum average velocity point after which
the average velocity decreases. The deviation of the isothermal
average velocity from the real velocity is calculated as follows,
demonstrated in Fig. 15:

dev iation ¼
�u� �u0

�u0
� 100; ð47Þ

where �u is the average isothermal velocity and �u0 is the real non-
isothermal average velocity in which the dissipative terms are con-
sidered. Eq. (48) is a second order polynomial regression fit (with a
regression coefficient R2 ¼ 1) obtained by using Eq. (47)
corresponding to data in Fig. 15:

dev iation ¼ 0:732Ju2 þ 0:378Ju� 0:001: ð48Þ

In the present work, the thermodynamic efficiency of the elec-
troosmotic pump is analyzed by evaluating the power generation
and dissipation in the pump. The First Law thermodynamic effi-
ciency is defined as useful output pressure work over total power
consumption. Eq. (49) defines the thermodynamic efficiency as:

gth ¼
_Wp

_Wp þ _Wj þ _Wt
; ð49Þ

where _Wp is the pressure work output per unit volume generated

by the electroosmotic pump and _Wt and _Wj are, respectively,
Joule heating and viscous dissipation per unit volume dissipated
in the pump. The power terms in Eq. (49) are calculated as:

_Wp ¼ 0:25�urp; ð50Þ

_Wj ¼
R H
�H rE2dy

2H
ð51Þ

and:

_Wt ¼

R H
�H l @u

@y

� �2
dy

2H
: ð52Þ

As the Joule number increases, the difference between the three
aforementioned power terms of the non-isothermal and the
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isothermal model increases. The differences between the graphs for
the pressure work and Joule heating per unit volume are con-
siderable, whereas, as it can be seen from Fig. 16, the viscous
dissipation per unit volume remains almost the same. _W 0

p;
_W 0

p

and _W 0
p are the pressure work, the Joule heating and viscous

dissipation, respectively, in dimensionless form normalized by
dividing to the non-isothermal pressure work for a channel with
1 micron meter width. Additionally, Fig. 16 shows that the viscous
dissipation term can be neglected in comparison with the Joule
heating effect as the channel width increase.

From Fig. 17, it can be seen that as the Joule number increases,
the thermodynamic efficiency for both isothermal and non-
isothermal models decreases. As a consequence of deviations
related to power terms, the isothermal simulation predicts a higher
thermodynamic efficiency in comparison with the non-isothermal
model. Meanwhile, as the joule number increases, the difference
between the models increases.

Fig. 18 illustrates the deviation of the isothermal model accu-
racy from the non-isothermal model. It can be seen that as the
Joule number increases, the isothermal model becomes more
questionable. At high Joule numbers, the isothermal model pre-
dicts the magnitude of the thermodynamic efficiency and the pres-
sure work per unit volume much more than the non-isothermal
model, whereas underestimates the Joule heating effect.
Additionally, Eq. (53) obtained as:

dev iation ¼ 5:173Ju2 þ 0:989Juþ 0:002; ð53Þ

is a second order polynomial regression fit corresponding to the
deviation of the isothermal pressure work per unit volume as a
function of the Joule number, with a regression coefficient R2 of
0.999. Eqs. (54) and (55) represented as:

dev iation ¼ �0:65Ju ð54Þ
and:

dev iation ¼ �0:07Ju� 0:003; ð55Þ

are also Joule heating and viscous dissipation deviation determined
by linear regression fits corresponding to data shown in Fig. 18,
with a regression coefficient R2 of 0.999 and 0.855, respectively.
Finally, Eq. (56) obtained as:

dev iation ¼ 9:588Ju2 þ 1:089Juþ 0:007; ð56Þ

is a second order polynomial regression fit related to the deviation
of the isothermal thermodynamic efficiency model from the non-
isothermal model as a function of the Joule number shown in
Fig. 18 with a regression coefficient R2 ¼ 0:999.

4. Conclusions

Understanding of the flow behavior is a fundamental factor for
the design and optimization of an electroosmotic pump. The Joule
heating is an inevitable volumetric heating phenomenon that
always exists and creates lateral temperature variations in a chan-
nel which causes a significant effect on the flow behavior at high
electric fields. Taking this importance as the objective of this study,
we investigated the effect of Joule heating and viscous dissipation
on the thermodynamic efficiency of an electroosmotic micropump
in the Lattice Boltzmann framework. The simulation results, illus-
trated the average velocity as a function of the channel width,
shows that the average velocity in an electroosmotic micropump,
using a non-isothermal model, reaches a peak, while in an isother-
mal model, the average velocity reaches a plateau as the channel
width increases. There has been also demonstrated that an isother-
mal model not only results in higher pressure work per unit vol-
ume in comparison with a non-isothermal model, but also
underestimates the dissipative terms including the Joule heating.
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Hence, the thermodynamic efficiency obtained by isothermal
model proved to be considerably inaccurate at high Joule numbers.
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