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In the present work, a centrifugal pump impeller’s blades shape was redesigned to reach a higher effi-
ciency in turbine mode using two different optimization algorithms: one is a local method as incomplete
sensitivities–gradient based optimization algorithm coupled by 3D Navier–Stokes flow solver, and
another is a global method as Genetic algorithms and artificial neural network coupled by 3D Navier–
Stokes flow solver. New impeller was manufactured and tested in the test rig. Comparison of the local
optimization method results with the global optimization method results showed that the gradient based
method has detected the global optimum point. Experimental results confirmed the numerical efficiency
improvement in all measured points. This study illustrated that the developed gradient based optimiza-
tion method is efficient for 3D radial turbomachinery blade optimization.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction sensitivities can be computed for individual constraint at no extra
The optimization problems associated to turbomachinery de-
sign often involve many constraints and large sets of parameters,
which in general leads to objective functions presenting many ex-
treme. It is well-known that optimization methods based on gradi-
ents techniques are efficient in terms of convergence rate, but do
not guarantee to produce the global optimum [1]. On the other
hand Genetic algorithms offer the advantage of enhancing the
probability of reaching the global optimum, but may require thou-
sands of iterations [2].

The computation of the gradient of the cost function in gradient
based methods for optimization is a major problem. Adjoint meth-
od based on control theory [3,4] can reduce the cost of this calcu-
lation by developing a complicated solver for the adjoint variable.
This method is particularly efficient for problems with a large
dimension of the control space. This difficulty is more penalizing
when industrial black-box flow solvers are used for the state,
which is nowadays a systematic demand. Finite differences permit
to get the sensitivity of black-box solvers, but then the cost of the
evaluation is proportional to the size of the control space. Incom-
plete sensitivity method is a possible choice for calculating approx-
imate gradient at practically no cost. In addition, incomplete
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cost. Providing individual sensitivities for constraints is useful in
robust optimization as one would like to see the sensitivity of
the final design for small perturbation of control parameters for
the different functionals involved. However, incomplete sensitivi-
ties have a limited validity domain: the cost function must be de-
fined over the shape, or part of it, and must involve product of state
by geometry functions. Functionals based, for instance, on aerody-
namic coefficients enter this class. But, that functionals involved
in radial blade design do not belong to this validity domain.
Derakhshan et al. [5,6] proposed a suitable reformulation of the
problem for 3D radial turbomachinery blade optimization.

On the other hand, coupling of Genetic algorithms with a three-
dimensional Navier–Stokes solver cannot be considered under the
framework of an industrial design process. Demeulenaere and
Hirsch [7], presented a methodology that the evaluation of the suc-
cessive designs was performed using an artificial neural network
instead of a flow solver, which permits to use the Genetic algo-
rithms in an efficient way. The accuracy of the optimization de-
pends on the knowledge of the neural network, which is fed by
design examples stored in a database. The generality of the formu-
lation of the FINE™/Design3D optimization techniques developed
by Numeca [8] allows the objective function to be based on the
evaluation of the performance at different working conditions.

The design exercise presented in the paper demonstrates the
application of two optimization strategies to the redesign of the
impeller blades shape of a centrifugal reverse pump. FINE™/De-
sign3D based on Genetic algorithms and neural network gives
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the global optimum point of the cost function. Therefore, this is an
appropriate approach to show the incomplete sensitivities–gradi-
ent based method is able to recognize the global optimal points.

After numerical redesign, the new impeller was manufactured
and tested in the test rig.
2. Efficiency improvement of centrifugal reverse pump

The main objective was to reach higher efficiency by redesign-
ing of the blades. Using the gradient based optimization algorithm
and incomplete sensitivity method developed by Derakhshan et al.
[5,6] coupled by FINE™/Turbo as the flow solver developed by
Numeca [8], the shape of blades was redesigned. In the next step,
FINE™/Design3D based on Genetic algorithms and artificial neural
network optimization method developed by Numeca [8] applied to
redesign the blades again.
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2.1. Incomplete sensitivities–gradient based optimization algorithm

The general form of a shape optimization problem can be writ-
ten as [9]:

min JðxcÞ;WðxcÞ;rxc WðxcÞÞ
Sðxc;WðxcÞ;rxc WðxcÞÞ ¼ 0
g1ðxcÞ 6 0; g2ðWðxcÞÞ 6 0

8><
>: ð1Þ

where xc is the control variable for the shape, W is the flow variable,
S is the state equation, g1 is the geometrical constraints, g2 is the
state constraints and J is the cost function that should be
minimized.

The local optimization algorithm can be summarized as:
Optimization loop

� Provide initial shape parameterization, x1
c .

� For k = 2,3 ,. . ., kmax Do:
� Compute the flow state: W(xk

c ).
� Compute the cost function: J(xk

c ;Wðxk
cÞ).

� Compute the incomplete sensitivity of the cost function:
dJðxk

c ;Wðxk
c ÞÞ

dxc
.

� If dJðxk
c ;Wðxk

c ÞÞ
dxc

��� ��� < e or Jðxk
c ;Wðxk

cÞÞ < e
� �

: STOP.

� Compute xkþ1
c minimizing J using incomplete gradient and the

approximate inverse of Hessian by Broyden, Fletcher, Goldfarb,
and Shanno (BFGS) [10] and evaluating when it is necessary
Wðxkþ1

c Þ and Jðxk
c ;Wðxk

cÞÞ.

2.1.1. Shape parameterization
Several parameterizations are possible to describe aerodynamic

or hydrodynamic shapes. In radial turbomachinery, one can be
considered as the spanwise blade angle distribution from leading
to trailing edges. The performance of a radial turbomachines (i.e.
centrifugal pumps) is intensely influenced by these blade angles
[11]. Previous results have shown that hydraulic efficiency is not
sensitive to small perturbations of blade thicknesses [11]. On the
other hand, thickness is one of the manufacturing constraints.
Therefore the blade thicknesses were frozen in optimization pro-
cess. Also in this optimization, other manufacturing constraints
were ignored. The meridional plan of the hub and shroud and
the outlet diameter (in centrifugal pump) were fixed. The optimi-
zation was performed in two steps:
R shroud

Fig. 1. Radial blade parameterization. (a) First parameterization, blade angle
distribution from leading to trailing edges. (b) Second parameterization, rotation
mid-span and shroud-span around leading edge with respect to hub-span.
2.1.1.1. Primal optimization. For a radial blade, the camber lines in
hub-span, mid-span and shroud-span were linked through the fol-
lowing relation:
dhðRÞ ¼ hðRÞ � hinitialðRÞ

¼ c1ðR� R1Þ þ c2ðR� R1Þ2 þ c3ðR� R1Þ3

R
ð2Þ

where h is the tangential angle, R the blade radius, R1 the radius of
the blade leading edge in hub-span (in centrifugal pump). The pro-
file is fixed in R1. The coefficients c1, c2 and c3 are control parameters
(Fig. 1a).

2.1.1.2. Final optimization. The optimal shape from primal parame-
terization was used as initial guess for the second level parameter-
ization. The camber lines of mid-span and shroud-span were linked
to the blade camber line in hub-span through:

du ¼ c2i�1Sþ c2i�2S2 þ c2i�3S3

S
ð3Þ

where i = 2,3. m ¼
R

dm
R ; dm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dR2 þ dz2

p
, in m � h conformal plan.

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ h2

p
. Here the blade camber lines in mid-span and shroud-

span are rotated around trailing edge, which is fixed with respect to
the hub-span camber line of the blade (Fig. 1b). The coefficients c4,
c5 and c6 are control parameters for mid-span and c7, c8 and c9 for
shroud-span.

2.1.2. Sensitivity and incomplete sensitivity
The gradient of a cost function Jðxc; qðxcÞ;WðqðxcÞÞÞ, function of

shape control parameters xc, geometric entities qðxcÞ (normal, vol-
ume, surface, . . .) and state variables W can be derived using chain
rule:

dJ
dxc
¼ @J
@xc
þ @J
@q

@q
@xc
þ @J
@W

@W
@q

@q
@xc

ð4Þ

where f and g are functions involving geometric quantities and state
quantities respectively. For incomplete sensitivities application, the
cost function should be expressed as a function of the aerodynamic
coefficients or more generally [3]:

J ¼
Z

C
f ðx; qðxÞÞgðWðqðxÞÞdc ð5Þ

The dominant part in the gradient comes from geometrical
quantities sensitivities and not from state linearization [3]. More
precisely, the last term in gradient expression can be neglected:

dJ
dxc
� @JðWÞ

@xc
þ @JðWÞ

@xq

@xq

@xc
ð6Þ



dφ(s)

s

O

θ

m

Fig. 1 (continued)
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This gradient approximation avoids the evaluation of an adjoint
state and decreases the computational cost. Typical functionals in
this class are aerodynamic or hydrodynamic forces on a shape
along an arbitrary direction as:

Tr ¼
Z

C
½T � n�dC

� �
� r ð7Þ

where T ¼ �pI þ ðmþ mtÞðrut þruTÞ. Here, n is the normal to the
shape, r is an arbitrary direction and T is the Newtonian stress
tensor.

In this optimization, incomplete sensitivities were improved by
adding supplementary terms to add physical sense to the approx-
imate gradient. In other word, reduced order models (i.e. wall func-
tions) can improve incomplete sensitivity in an inexpensive way.
The method and its formulation can be found in authors pervious
works [5,6].

2.1.3. Cost function for incomplete sensitivities domain
The aim of this study was blade shape optimization of pump

impeller in reverse operation to reach higher efficiency in its rated
point defined as:

gh ¼
Trx
cqh

ð8Þ

where h is head (m), q is flow rate (m3/s), Tr (N m) is the axial torque
from fluid to impeller, x ¼ 2pN

60 and c is specific gravity (kg/m2 s2).
To use incomplete sensitivities, the cost function must be based

on information over the shape (or part of it). In Eq. (8) increasing
the torque improves the efficiency: J ¼ � Tr

Tr0
where:

Tr ¼
Z

Cw

½T � n�RdC; T ¼ �pI þ ðmþ mtÞðrut þruTÞ

But one may need to improve the hydraulic efficiency of the
pump at constant design point (constant specific speed). So looking
for higher hydraulic efficiency should be done at given head (total
pressure difference between outlet and inlet) and flow rate. The
flow rate is constant in optimization process and can be imposed
through boundary conditions. Head (or pressure difference) can
be added as a penalty in the cost function:

J ¼ � Tr

Tr0
þ a
jh� h0j

h0
ð9Þ

Unfortunately, this new term does not enter to incomplete sen-
sitivity validity domain as it is defined away from the shape and
also does not include any geometric quantity. Eventually, the cost
function accounting for constant head can be reformulated to
adapt incomplete sensitivity method using reformulated pressure
difference (or head) based on axial and radial forces and blade vol-
ume in radial turbomachinery:

J ¼ � Tr

Tr0
þ a
jFa � Fa0j

Fa0
þ b
jFR � FR0j

FR0
þ c
jVb � Vb0j

Vb0
ð10Þ

which enters incomplete sensitivity validity domain. Indeed,
the cost function is the rotor axial torque with state constraints
on hydrodynamic axial (Fa), radial forces (Fr) and geometrical con-
straint on the blade volume (Vb). The details of this reformulation
can be found in authors’ previous work [5]. Hydraulic efficiency
can be improved by increasing torque. Head can be unchanged
by keeping Fa, FR and Vb at the same time.

2.1.4. Black-box sensitivity evaluation
Obviously, incomplete sensitivities can be obtained by lineariz-

ing the functional and keeping all state based quantities un-
changed. However, it might be interesting to avoid any extra
programming effort for the user. This is a demand from industry
where people are often not professional enough or are black-box
solver users. This is one of main interests of gradient free ap-
proaches such as Genetic algorithms. A possible implementation
of incomplete sensitivities is a change in the functional does not
imply any new coding for the calculation of the gradient other than
coding the functional itself.

2.1.5. Complex variable method
The drawbacks of difference formula are well known (choice of

the increment and difference between two close quantities). These
can be avoided working with complex values. In practice, this
method only requires a redefinition of all real variables of a com-
puter program as complex. This is not convenient if a black-box
solver is used. But, with incomplete sensitivities only the boundary
integral calculation are involved [5,6].

2.1.6. Minimization method
We briefly recall the minimization method to show where

incomplete sensitivities appear in descent iterations. Our main
interest goes to quasi-Newton methods such as BFGS coupled with
a line search method [10]. The approximate inverse of Hessian of
the functional is built using successive gradient evaluations. There-
fore, with incomplete sensitivities one might expect not only a
deviation in the gradient but also in eigenvalues of the Hessian.
But it has been showed that for functionals in the validity domain
of incomplete sensitivities one has equidistribution of the error in
the Hessian up-to-date. [5,6].

2.2. Genetic algorithms and artificial neural network optimization
method

FINE™/Design3D developed by Numeca [8] is an optimal design
software with various optimization methods. One global method is
Genetic algorithms coupled by artificial neural network. The basic
idea of this method is to accelerate the design of new blades using
the knowledge acquired during previous designs of similar blades.
The core of the design system is a database containing the results
of all Navier–Stokes computations performed during the previous
and present design processes.

2.2.1. The parametric blade modeler (AutoBlade™)
The parametric model that has been adopted in Autoblade™

consists of three sections at hub-span, mid-span and shroud-span,
defined by a camber line (Fig. 2) and symmetric thickness distribu-
tions. The trailing edge radius is constant from hub to shroud,
whereas the meridional trace of the leading edge is non-linear.
3D blade shape is stacked along the trailing edge, with a non-linear



Fig. 2. Meridional view of the centrifugal pump.

Sh. Derakhshan et al. / Computers & Fluids 39 (2010) 2022–2029 2025
tangential stacking model based on the two angles at hub and
shroud.

The number of parameters included in the optimization has
been restricted to 12. The hub and shroud endwalls, as well as
the thickness distributions have been kept constant. The camber
line parameters are: four control points on each section. As indi-
cated in Fig. 3, the 4th control point has been eliminated from
the optimization. It has been set as a dependent parameter, whose
value results from the values of the 3rd and 5th control points
positions.
2.2.2. The objective function
The optimization problem can therefore be seen as the minimi-

zation of an objective function in function of several variables (the
geometrical parameters) subject to several constraints (mechani-
cal, manufacturing and aerodynamic constraints), the main objec-
tive function, and the constraints being non-linear. The general
approach to this problem is to transform the original constrained
minimization problem into an unconstrained one by converting
the constraints into penalty terms that are increasing when violat-
ing the constraints. A pseudo-objective function is then created by
summing up all the penalty terms and the original objective:

F ¼
X

penalties

w
V � Vreq

Vreq

� �2

ð11Þ

where w is a weighting function that the user can associate to each
penalty. One can notice that the difference between the actual value
V and the required Vreq is divided by a reference value Vref, so that all
the terms have a similar order of magnitude.
Fig. 3. Setting of dependent parameter.
The optimization technique that is adopted in FINE™/Design3D
can be considered as multi-objective, as all objectives and con-
straints are put together into one single objective function. There
is no guarantee that the final proposed solution satisfies all the
constraints. Weighting functions are associated to the different
constraints, which allow the user to reflect the levels of priority
into the optimization. Different solutions will be obtained, depend-
ing on the values of the weighting factors. Here objective function
was included efficiency and total pressure difference with follow-
ing values: greq = gref = 1.0 and Dpref = Dpreq = Dp0. The algorithm
tries to increase efficiency around initial total pressure difference.

The objective function was the same with GB optimization
method.

2.2.3. The optimization algorithm
The goal of the optimization is to find the minimum of the

objective function using the simplified analysis model. Here, an
essential issue is the robustness of the numerical optimization
algorithm. The choice of the optimization algorithm is mainly
based on the following two considerations

– Many local optima may exist in the design space and therefore a
global optimization technique is required.

– The evaluation of the blade performance using the approximate
model is very fast.

Consequently, the number of required function evaluations is
now of far less importance than if a detailed Navier–Stokes compu-
tation was needed at each step.

Based on the first consideration, the straightforward application
of numerical optimization techniques that rely on derivatives are
questionable because they are only local optimization techniques.
On the contrary, stochastic techniques such as the Genetic algo-
rithm (GA) or simulated annealing (SA) are global optimization
techniques that do not get stuck in local minimum and therefore
offer an alternative to conventional gradient methods for optimiza-
tion problems where the function evaluation is very fast.

Genetic algorithms were designed by Holland in the 70 s, and
improved and made well known by Goldberg [2]. The Genetic algo-
rithm is initiated with the creation of an initial population whose
elements are randomly selected in the whole design space. Differ-
ent procedures are then applied in order to successively generate
new populations containing better elements. The performance of
an individual is measured by its fitness (inverse of the objective
function). Elitism can first be applied, which consists of keeping
the best elements from the current population. The other applied
operations are combination and mutation. Pairs of individuals are
selected from this population based on their objective function
values.

Then, each pair of individuals undergoes a reproduction mech-
anism to generate a new population in such a way that fitter indi-
viduals will spread their genes with higher probability.

The children replace their parents. As this proceeds, inferior
traits in the pool die out due to lack of reproduction. At the same
time, strong traits tend to combine with other strong traits to pro-
duce children who perform better.

2.2.4. The approximate model
The basic principle of the method is to build an approximate

model of the original analysis problem (the three-dimensional
Navier–Stokes equations). This approximate model can then be
used inside an optimization loop instead of the original model.

In this way the performance evaluation by the approximate
model is not costly and the number of performance evaluations
performed by the approximate model for the optimization is no
longer critical.
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Among the large number of possible techniques able to con-
struct the approximate model, artificial neural network (ANN)
has been selected. Although the initial motivation for developing
ANN was to develop computer models that could imitate certain
brain functions, ANN can also be thought of as a powerful
interpolator.

The details can be found in [12].
2.3. 3D flow simulation

To have an efficient shape optimization for fluids, the optimiza-
tion platform should be able to interact with various CFD solvers.
To achieve such adaptability, it is important to keep the interface
free of constraints for a particular software. This is also one of
the advantages of incomplete sensitivities concept as it lets the
interface to be only surface based. FINE™/Turbo developed by
Numeca, is an integrated software based on finite volume discret-
ization for multi-block structured grids. The multi-block structured
grids on the blades were prepared by AutoGrid5™ developed by
Numeca [13]. The physical model used in the solver was the Rey-
nolds-averaged Navier–Stokes equations in rotating frames of ref-
erence coupled with various turbulence models and near-wall
treatment for low-Reynolds modeling. The standard high Reynolds
k � e turbulence model with extended wall functions could be cho-
sen without any limitation [14–16].

The discrete schemes were second order in space [14] and first-
order in time with time marching to steady solutions. Mass flow
rate, velocity direction, turbulence kinetic energy k and turbulent
dissipation e were imposed at inlet boundary while at outlet
boundary condition, static pressure was prescribed. Finally, peri-
odic boundary condition was applied between two blades. This
flow solver is used for 3D flow simulation in both optimization
methods.
3. Experimental setup

A complete laboratory model of mini hydropower plant was in-
stalled in University of Tehran [17] as shown in Fig. 4. The flow rate
and head for pump working as turbine were generated in the
experimental setup by several pumps.

When a pump works as a turbine, a control system is needed to
automatically regulate the frequency. The classical governor used
for standard turbines are expensive and not always recommended
for small hydropower plants. Since these types of plants are more
being used in isolated areas, an electronic load controller with bal-
last loads was built and used for keeping the frequency of genera-
tor in these tests. A conventional synchronous generator was
installed for producing electricity. For turbine shaft torque measur-
ing, generator was changed to suspense state mode and using a
scaled arm and several weights, turbine shaft torque was mea-
Consumer Turbine

Torque
Meter

Generator

Controller

Fig. 4. The mini hydropower estab
sured. The flow rate was measured by the discharge law and using
various orifice plates for each test. Pressures were measured by
some barometers. An industrial low specific speed centrifugal
pump with specific speed 23.5 (m, m3/s) was selected for testing
as turbine with one original impeller and three modified impellers.
This pump had maximum input turbine shaft power, maximum
head and maximum flow rate of 20 kW, 25 m and 120 l/s, respec-
tively. For the reverse pump testing, feed pump, several pipes, an
orifice, a generator and ballast loads were selected and installed
in the test rig. In the application of the reverse pump, it should
be considered that: if a generator is to be coupled directly, a nom-
inal speed corresponding to one of synchronous speeds (e.g. 750,
1000, 1500 or 3000 rpm) should be chosen. For induction genera-
tors and also induction motors slip factor must be taken into ac-
count (the tested pump rotates at 1450 rpm in pump mode). In
practice, synchronous generators are usually used. The reverse
pump was tested in Nt = 1500 rpm.

After measuring all parameters, reverse pump head, flow rate,
output power and efficiency were obtained. A first-order uncer-
tainty analysis is performed using constant odds combination
method, based on a 95% confidence level as described by Moffat
[18]. The uncertainty of head, flow rate, power and efficiency are,
respectively ±5.5%, ±3.4%, ±5.1% and ±5.5%.
4. Results

In this study a centrifugal pump considered in reverse rotation
with a rotational speed of, 1500 rpm, a flow rate of 126 m3/h and a
total head rise of, 38 m. The pump had seven blades with an inlet
radius in hub of 0.25 m. This pump was tested as turbine in the test
rig. The shape of impeller blades were optimized by developed
incomplete sensitivities–gradient based optimization algorithm
to reach higher efficiency in rated point region. The cost function
for optimization was:

J ¼ � Tr

Tr0
þ 0:05

jFa � Fa0j
Fa0

þ 0:1
jFR � FR0j

FR0
þ 0:001

jVb � Vb0j
Vb0

The initial geometry was available at hub-span, mid-span and
shroud-span. The mesh used for FINE™/Turbo was structured
and multi-block and of HHOHH(O5H)-type. This was an elliptic
mesh with about 400,000 nodes. Computational domain and grid
view in mid-span are shown in Fig. 5. To check if the grid was
too coarse, simulations were made with one impeller channel
and two different grids. The first grid had about 150,000 cells for
one impeller channel and the second one consisted of about
400,000 cells. The simulation results showed differences of less
than 1% for efficiency and head. The cost function included not only
the torque to maximize but also a state constraint on hydrody-
namic forces as well as a geometrical constraint on the blade
volume.
Flow
Meter

Valve

MotorPumpVessel

Barometer

lished in University of Tehran.



Fig. 5. Computational domain and the grid on mid-span.
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Table 1
Optimization results for the gradient based method.

Initial Primal optimization Final optimization

Tr/Tr0 1.0 1.0425(+4.25%) 1.0227(+2.27%)
h/h0 1.0 1.0197(+1.97%) 1.0108(+1.08%)
g/g0 1.0 1.0223(+2.23%) 1.0117(+1.17%)
Cost function gradient 0.045 0.006 0.004
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Results showed that the torque was increased by 4.25% and the
head by 1.97% for a hydraulic efficiency improvement of 2.2%
(Fig. 6 and Table 1).

For the second optimization with the same cost function, the
torque was increased by 2.27%, and the head by 1.08% for a hydrau-
lic efficiency improvement of 1.17% (Fig. 7 and Table 1).

The initial and final optimization results are shown in Table 1.
The final designs were more robust than the original shape as
the gradients of all constraints were reduced. The optimization
process was reasonably fast and required about 17 iterations of
the optimization algorithm and 26 functional evolutions. On a
3 GHz computer with 4GB RAM, the flow analysis and the complete
optimization took almost 23 h and 25 h, respectively.

In the next step, the impeller of reverse pump redesigned by
FINE™/Design3D with described parameterization and objective
function with the same simulation of gradient based method. For
training of ANN, 10 data bases evaluated using flow solver. After
training, optimization loop converged after 15 iterations. Fig. 8
shows the history of objective function evaluation during optimi-
zation loop. Fig. 9 compares the optimization results of Genetic
2 4 6 8 10 12 14 16
Iteration

1

1.01

1.02

1.03

1.04

1.05
Torque
Head
Efficiency

η h
/η

-
h/

h 0
-

T r
/T

r0

Fig. 6. GB-optimization for the first parameterization of a centrifugal reverse pump
blade. (a) Blade performance vs. optimization iterations (gh/gh0, h/h0, Tr/Tr0). (b)
Initial and final blades, hub-span, mid-span and shroud-span.

2 4 6 8 10 12 14
Iteration

0.99

Fig. 7. GB-optimization for the second parameterization of a centrifugal reverse
pump blade. (a) Blade performance vs. optimization iterations (gh/gh0, h/h0, Tr/Tr0).
(b) Initial and final blades, hub-span, mid-span and shroud-span.
algorithms with the initial geometry results. Genetic algorithms
results showed that the torque was increased by 5.37% and
the head by 2.2% for a hydraulic efficiency improvement of 3.1%
(Table 2). Fig. 10 compares the results of gradient based method
(GB) and Genetic algorithms (GA) results. It observes that GB has
detected global minimum point properly. On a 3 GHz computer
with 4GB RAM, complete GA optimization took almost 30 h.

Finally, the new impeller were manufactured and tested in the
test rig.

Figs. 11 and 12 show the results of the experiments. In these fig-
ures, w, /, p are defined as:

w ¼ gH

n2D2 ; / ¼ Q

nD3 ; p ¼ P

qn3D5 ð12Þ
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Fig. 8. Evaluating of objective function during GA optimization.
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Fig. 9. Initial and final blades for GA, hub-span, mid-span and shroud-span.

Table 2
Optimization results for the Genetic algorithms method.

Initial geometry Final geometry

Tr/Tr0 1.0 1.0537(+5.37%)
H/H0 1.0 1.022(+2.2%)
g/g0 1.0 1.031(+3.1%)
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Fig. 10. Comparison of the final blade designs of GB and GA.
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Fig. 11. Experimental results for head number and efficiency.
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Fig. 12. Experimental results for power number and efficiency.
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Table 3 shows the changes in hydraulic parameters in flow rate
of BEP. Efficiency improvement occurs in all flow rates of part load
and overload zones. Optimized impeller gives rising as �2.2%,
+9.4%, +14.8% and +2.9% for head, power and efficiency, respec-
tively. Table 4 shows the comparison between experimental and



Table 3
Experimental results for new implore.

Initial geometry Optimized geometry

u 0.090 0.088(�2.2%)
w 9.6 10.5(9.4%)
p 0.61 0.70(14.8%)
g 0.725 0.746(2.9%)

Table 4
Comparison of numerical optimization and experimental results.

Initial Numerical optimization Experimental

Tr/Tr0 1.0 +9.65 +14.8
h/h0 1.0 +1.82 +9.4
g/g0 1.0 +2.61 +2.9

Sh. Derakhshan et al. / Computers & Fluids 39 (2010) 2022–2029 2029
numerical optimization results. Experiment shows higher values
for power, head and efficiency. This confirms the numerical results
and shows that the blade behavior was improved for a wider oper-
ating range. But the head is increased slightly more than numerical
optimization data. In the optimized geometry, the inlet blade angle
is bigger than that of the initial one.
5. Conclusions

Using the gradient based optimization process on the radial tur-
bomachinery blade design developed in authors’ previous works
[5,6], the blades shape of the impeller of a reverse pump was opti-
mized to improve its maximum efficiency in rated point. The new
design was numerically compared by the global optimization re-
sults – Genetic algorithms and neural network-of FINE™/Design3D
and experimentally tested for several operating points. It is ob-
served that the gradient based optimization method has detected
the global minimum point properly. Experimental results con-
firmed that the efficiency is improved in all measured point for
new impeller.
The main aim was to prove that incomplete sensitivity could be
given confidence using GA as a reference solution provider. But it is
well-known that the gradient based methods, in general, converge
to local optimums and there is no guarantee that they find the glo-
bal optimum.

This study illustrated that developed gradient based optimiza-
tion method reached to the global optimization method faster than
conventional global optimization methods for this special case as
the turbomachinery blade optimal design (not in general).
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