Analytical Solution of non-Fourier Differential Equation for Unsteady Temperature Field within a hollow sphere under Harmonic Boundary Condition

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Mechanical engineering

By:
Amin Bahrami

Supervisor:
Dr. Gh. Atefi

May 2010
Abstract

Recently by developing engineering science and new technologies, applications which in them considering non-Fourier heat conduction is important, has increased. In this study analytical solution of the axisymmetric non-Fourier temperature field within a hollow sphere is investigated considering both single phase and dual phase lagging heat conduction equation. The solution is found for the most General linear time-dependent boundary conditions. Then a periodic boundary condition has been simulated with harmonic oscillation. The material is assumed to be homogeneous and isotropic with temperature-independent thermal properties. To solve the problem, first of all, the boundary condition is assumed to be a constant and by applying the method of separation of variables, the temperature distribution in a hollow sphere is obtained. Then by Duhamel's principle, the temperature field under a periodic boundary condition is determined. Also the problem for single phase lagging constitutive relation is solved numerically and a comparing for the result of both analytical and numerical solution will be given.