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Distributed-Parameter Systems: 
Approximate Methods

Rayleigh's Principle
The Rayleigh-Ritz Method 
An Enhanced Rayleigh-Ritz Method
The Assumed-Modes Method: System Response 
The Galerkin Method
The Collocation Method
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The Assumed-Modes Method: 
System Response

known trial functions
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The Assumed-Modes Method: 
System Response

Example: Use the assumed-modes method in 
conjunction with a three-term series 

to obtain the response of the tapered rod of 
previous Example to the uniformly distributed 
force
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THE GALERKIN METHOD

The approximate solution is assumed in the form

known independent comparison
functions from a complete set

residual

Galerkin's method is more general in scope 
and can be used for both conservative and 
non-conservative systems.
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THE GALERKIN METHOD

The residual is orthogonal to every trial 
function.
As n increases without bounds, the residual

can remain orthogonal to an infinite set of 
independent functions only if it tends itself to 
zero, or

Demonstrates the convergence of Galerkin's 
method.
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THE GALERKIN METHOD
Consider a viscously damped beam in transverse 
vibration.
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THE GALERKIN METHOD
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THE COLLOCATION METHOD
The main difference between the collocation 

method and Galerkin's method lies in the 
weighting functions, 
 the collocation method represent spatial Dirac 

delta functions.
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THE COLLOCATION METHOD: 
A beam in transverse vibration
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THE COLLOCATION METHOD: 
The tapered rod

Consider the tapered rod fixed at x=0 and 
spring-supported at x=L. Solve the problem by 
the collocation method in two different ways: 
 1)using the locations xi = iL/n (i = 1,2, . . . , n) 
 2)using the locations xi =(2i-1)L/2n (i=1,2,. . ., n) 

Give results for n = 2 and n = 3.
List the three lowest natural frequencies for n = 

2,3, . . . ,30 and discuss the nature of the 
convergence for both cases.
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THE COLLOCATION METHOD: 
The tapered rod
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THE COLLOCATION METHOD: 
The tapered rod

For xi = iL/n the natural frequencies increase as 
n increases:
 The specified locations tend to make the rod 

longer than it actually is. 
 Because an increased length, while everything 

else remains the same, tends to reduce the 
stiffness,
 The approximate natural frequencies are lower 

than the actual natural frequencies.
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THE COLLOCATION METHOD: 
The tapered rod

On the other hand, the locations xi=(2i-1)L/2n 
tend to make the rod shorter than it actually is, 
 So that the stiffness of the model is larger than 

the stiffness of the actual system. 
 As a result, the approximate natural frequencies 

are larger than the actual natural frequencies.

This points to the arbitrariness and lack of 
predictability inherent in the collocation method, 
with the nature of the results depending on the 
choice of locations.
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Distributed-Parameter Systems: 
Approximate Methods

Rayleigh's Principle
The Rayleigh-Ritz Method 
An Enhanced Rayleigh-Ritz Method
The Assumed-Modes Method: System Response 
The Galerkin Method
The Collocation Method
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INTRODUCTION TO THE FINITE 
ELEMENT METHOD

Finite element method is the most important
development in the static and dynamic analysis
of structures in the second half of the twentieth
century.
Although the finite element method was

developed independently, it was soon
recognized as the most important variant of the
Rayleigh-Ritz method.
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INTRODUCTION TO THE FINITE 
ELEMENT METHOD

As with the classical Rayleigh-Ritz method, the 
finite element method also envisions 
approximate solutions to problems of vibrating 
distributed systems in the form of linear 
combinations of known trial functions.
 Moreover, the expressions for the stiffness and 

mass matrices defining the eigenvalue problem 
are the same as for the classical Rayleigh-Ritz 
method. 
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INTRODUCTION TO THE FINITE 
ELEMENT METHOD

The basic difference between the two 
approaches lies in the nature of the trial 
functions. 
 in the classical Rayleigh-Ritz method the trial 

functions are global functions,
 in the finite element method they are local 

functions extending over small sub-domains of 
the system, namely, over finite elements.
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INTRODUCTION TO THE FINITE 
ELEMENT METHOD

In finite element modeling deflection shapes 
are limited to a portion (finite element) of the 
structure, with the elements being 
assembled to for the structural system.
The elements are joined together at nodes, or 

joints, and displacement compatibility is 
enforced at these joints.
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ELEMENT STIFFNESS AND MASS 
MATRICES AND FORCE VECTOR

Uniform bar element undergoing axial deformation:

The shape functions must satisfy the BCs:
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ELEMENT STIFFNESS AND MASS 
MATRICES AND FORCE VECTOR

Considering axial deformation of the uniform 
element under static loads:
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ELEMENT STIFFNESS AND MASS 
MATRICES AND FORCE VECTOR
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Transverse Motion: Bernoulli-Euler 
Beam Theory
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Transverse Motion: Bernoulli-Euler 
Beam Theory
For a beam loaded only at its ends, the 
equilibrium equation is:
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Transverse Motion: Bernoulli-Euler 
Beam Theory
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Example
Determine the generalized load vector for a 
beam element subjected to a uniform 
transverse load.



School of Mechanical Engineering
Iran University of Science and Technology

Torsion
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ASSEMBLY OF SYSTEM MATRICES:
• Scheme for the assembly of global matrices 

from element matrices for second-order 
systems using linear interpolation functions



School of Mechanical Engineering
Iran University of Science and Technology

ASSEMBLY OF SYSTEM MATRICES:

• Scheme for the assembly of global matrices 
from element matrices for fourth-order systems



School of Mechanical Engineering
Iran University of Science and Technology

BOUNDARY CONDITIONS

• The Finite Element formulations inherently 
satisfy Free boundary conditions.

• Fixed BC’s: 
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BOUNDARY CONDITIONS

• Supported Spring :

• Lumped Mass:
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Example 10.1:The eigenvalue problem 
for the tapered rod in axial vibration

1. Use the element stiffness and mass matrices 
with variable cross sections given by:

2. Approximate the stiffness and mass 
distributions over the finite elements (piece 
wise constant ) as:
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Example 10.1:Variable cross section 
rod element
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Example 10.1:Variable cross section 
rod element
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Example 10.1:Variable cross section 
rod element



School of Mechanical Engineering
Iran University of Science and Technology

Example 10.1:Assembelled Stiffness 
Matrix
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Example 10.1:Assembelled Mass 
Matrix
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Example 10.1:Exact Parameter 
Distributions
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Example 10.1: Convergence Study
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Superaccurate finite element 
eigenvalue computation

The consistent finite element formulation:
It is theoretically sound and also, 
provides an assured upper bound on the lowest 

eigenvalue.

Mass lumping producing a diagonal mass matrix 
An attractive option for the engineer confronted 

with large complex systems.
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A Fixed-Free Rod Finite Element Code 

Consistent Mass Model

Lumped Mass Model
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Convergence Study of the 1st Mode

Consistent Mass Model

Lumped Mass Model
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Superaccurate finite element 
eigenvalue computation

Assembly of the linear finite elements over this 
mesh using the lumped mass matrix leads to:

Provided:
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eigenvalue computation
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Superaccurate finite element 
eigenvalue computation
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Superaccurate finite element 
eigenvalue computation

If:
The consistent finite element formulation leads 

to an overestimation of eigenvalues and 
The lumped finite element formulation leads to 

an underestimation of eigenvalue; 

then it stands to reason that
an intermediate formulation should exist that is 

accurately superior to both formulations.
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Superaccurate finite element 
eigenvalue computation
Linear combinations of the lumped and the consistent 
mass matrices give various forms of nonconsistent mass 
matrices:

where the constraint              is imposed for mass 
conservation. 

1=+ βα
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Optimal element mass distribution
Write the general finite difference approximation:



School of Mechanical Engineering
Iran University of Science and Technology

Three-nodes string element
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More details in:
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PARAMETRIC MODELS AND ERROR 
ANALYSIS FOR RODS

Rod parametric model:
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PARAMETRIC MODELS AND ERROR 
ANALYSIS FOR RODS

The equation of the ith node in the assembled finite element 
model

0 /
2 .
4 1/12

th

nd

th

k EA dx
No new req
θ

⇒ =

⇒

⇒ =
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PARAMETRIC MODELS AND ERROR 
ANALYSIS FOR BEAMS
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PARAMETRIC MODELS AND ERROR 
ANALYSIS FOR BEAMS
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PARAMETRIC MODELS AND ERROR 
ANALYSIS FOR PLATES
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PARAMETRIC MODELS AND ERROR 
ANALYSIS FOR PLATES
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