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THE EQUATION OF MOTION OF MULTI
DEGREE OF FREEIDOM SYSTEMS
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THE EQUATION OF MOTION OF MULTI
DEGREE OF FREEIDOM SYSTEMS
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THE EQUATION OF MOTION OF MULTI
DEGREE OF FREEIDOM SYSTEMS
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FREE VIBRATIONS OF UNDAMPED
SYSTEMS, NATURAL MODES
Mx(t)+ Kx(t) =0

K{f} — f{f]ll = Synchronous motion
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EIGEN PROBLEM
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MODE SHAPES
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EXAMPLE
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EXAMPLE
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RESPONSE TO INITIAL EXCITATIONS
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EXAMPLE

X;1(0)= 1.2 cm. The other initial conditions are zero.
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COORDINATE TRANSFORMATION,

COUPLING i e
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ORTHOGONALITY OF MODES,
NATURAL COORDINATES
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EXAMPLE e
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BEAT PHENOMENON
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BEAT PHENOMENON
Then, considering the Initial conditions:
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Preliminaries:
Multi-Degree-of-Freedom Systems
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RESPONSE TO HARMONIC EXCITATIONS

MX(r)+Cx(t)+ Kx{(t) = F(t)
F(t) = Fe'™’ x(1) = X(iw)e'"
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Z(iw) = —w M +iwC+K
X(iw) =Z  Yiw)F



EXAMPLE:
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EXAMPLE:
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UNDAMPED VIBRATION ABSORBERS
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UNDAMPED VIBRATION ABSORBERS

p=02and w, = w,.

The shaded area indicates the *;
region which the performance of
the absorber can be regarded
as satisfactory.

|
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RESPONSE TO NON-PERIODIC
EXCITATIONS

Mx(t)+ Kx(t) =F(1)
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RESPONSE TO NON-PERIODIC
EXCITATIONS

T}-’l(fj=f Ni(t —m)gi(m)dr= fN[(I"-T)Elﬂw‘lT{fT
()

111

r a
m(r)=L Na(t —T)ga(m)d7= m’ﬂm;f{. Na(t —7)sinwr7dT

X(2) =mt)u; +m:2(t)uas

School of Mechan IE g ing
Iran University ofSc dT chnology



EXAMPLE: Fan
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EXAI\/IPLE:

f Ni(t—1) sinw Te(T)dT =
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Elements of Analytical Dynamics

Newton's laws were formulated for a single particle
» Can be extended to systems of particles.
» The equations of motion are expressed in terms of

physical coordinates vector and force vector.

= For this reason, Newrtonian mechanics is often referred to
as vectorial mechanics.

The drawback is that it requires one free-body diagram for
each of the masses,

» Necessitating the inclusion of reaction forces and
Interacting forces.

» These reaction and constraint forces play the role of
unknowns, which makes it necessary to work with a
surplus of equations of motion, one additional equation

for every unknown force.
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Elements of Analytical Dynamics

Analytical mechanics, or analytical dynamics,
considers the system as a whole:

» Not separate individual components,

» This excludes the reaction and constraint
forces automatically.

This approach, due to Lagrange, permits the
formulation of problems of dynamics in terms of:

» two scalar functions the kinetic energy and the
potential energy, and

»an infinitesimal expression, the virtual work
performed by the nonconservative forces.
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Elements of Analytical Dynamics

In analytical mechanics the equations of motion are
formulated in terms of generalized coordinates and
generalized forces:

» Not necessarily physical coordinates and forces.

» The formulation is independent of any special system
of coordinates.

The development of analytical mechanics required the
iIntroduction of the concept of virtual displacements,

» led to the development of the calculus of variations.

» For this reason, analytical mechanics is often referred
to as the variational approach to mechanics.
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6 Elements of Analytical Dynamics

6.1 DOF and Generalized Coordinates
6.2 The Principle of Virtual Work
6.3 The Principle of D'Alembert

6.4 The Extended Hamilton's Principle

6.5 Lagrange's Equations
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6.1 DEGREES OF FREEDOM AND
GENERALIZED COORDINATES

A source of possible difficulties in using Newton's
equations is use of physical coordinates, which may not

always be independent.
y S L’fx o Independent coordinates

b
! t . (x2,32) re =rge (-IC: yi‘f) and f‘}:

r; =rc — afcosfi+sinfj),
ro = rc + b(cosbi+ sinfj)

p— | ms L miL

0
_ i ad = \ h =
r1 =x1i4y1J, 2 = xi+ ) my+my mi+ma
2 : 2 2 : . :
(3’5_72 —x) "+ (Q2—y) =L The generalized coordinates are not unique
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6.2 THE PRINCIPLE OF VIRTUAL WORK

The principle of virtual work, due to Johann
Bernoulli, is basically a statement of the static
equilibrium of a mechanical system.

We consider a system of N particles and define
the virtual displacements, as infinitesimal changes
In the coordinates.

The virtual displacements must be consistent with
the system constraints, but are otherwise
aroitrary.

The virtual displacements, being infinitesimal,
obey the rules of differential calculus.
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THE PRINCIPLE OF VIRTUAL WORK

Ri,=F,+f=0,i=12...,N
— \

resultant force on each particle  applied force ~ constraint force

ﬁWf=RI'-tSI'f=D, I:=1,2,...,N

N
W=ZRE-+§EI-:£I
i=1

N N
_wzz S +Zf T = ()

\The virtual work performed by

N the constraint forces is zero
2 F;-6r; =0

a\
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THE PRINCIPLE OF VIRTUAL WORK

When [£; are independent,
W =3 Fi-bri =0 > Fi=0,1=12,.... N

i=]
If not to switch to a set of generalized
coordinates: r; =ri{gi.g2,...,qn), i=1,2,...,N

or; ar; ar; o 0T -
ﬁr;—E—ﬁqu——ﬁqj—l— g =) —bqi, i=1,2,...,N

q1 5'4’2 dqn — dqu
a_ﬁ?—ir- §r; = ZF Zdr'a i iF i) s ZQ& 0
= £ i i — afi’ﬁ: qJ = £\ = i Biﬂ qr = LOdgE =

> Q}E:"—ﬂ,k=l,2,... ¥l

Generalized forces
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THE PRINCIPLE OF D'ALEMBERT

The virtual work principle can be extended to
dynamics, in which form it is known as
d'Alembert's principle.

Fi+f —mi¥;=0,i=12,... N
[Ff—ll‘fg—m!'.]:j)‘ﬁrj:ﬂ, i=12,....N

N
Y (Fi —m;i) - 6 =0

=]
Lagrange version of d’Alembetrtls principle
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THE EXTENDED HAMILTON'S
PRINCIPLE

N
Y (Fi —m;i) - 6 =0

N =]
ZF; Orp =0W The virtual work of all the applied forces,
=1
d - R E & BE 1 - &+
E;(m,-r;- - Or) = m;¥j » Or; + m;T; - O = m;F; - Or; + 6(3m;t; - T;)

= mir'i:f - 51—1' —+ 5_?; «—— The kinetic energy of particle m;

) iz 2 A
'—f ;T ‘lﬁl',;di! = f :ST;iff -"f — (F’Hfi’; . ﬁl'j:ld.!.'
4 Iy hy ":'“I

2 .
= f ﬁT;dt—mji‘jvﬁrj
3

2
3y
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THE EXTENDED HAMILTON'S
PRINCIPLE

Itis convenient to choose  ér; =0 att =t and t = i,

L L)
—f J‘Hji.’t;=5l‘;r.'ﬂ=f bTde, ér; =0, =1, I = 1,2..... N

5] i

i N 2
_f Zmiﬁ*{ﬁridf:f ﬁTdf* {Sr5=“+ izlazﬁ'”:‘w; t=1,0
1 i1 I

I L
f (6T +oWide =0, or; =0, i=1,2.....N. t =1.,6>
Ly :

Extended Hamilton's principle
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THE EXTENDED HAMILTON'S
PRINCIPLE

] o
(6T +6W)der =0, ér; =0, i=1,2,... . N. t =1,

5|

*E_w — éwc "|"'§wm? = —0V +Wm:

where V is the potential energy
{2

(6T — 6V + W, dt =0, éri=0,i=1,2,...,N: t =11,

1

Or in terms of the independent generalized coordinates

iy L
f (6T — 6V + W, )dt =0, gy =0, k=1,2,...,n: t=1.06
1
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A Note:

dW =F-dr i |
W:mi"-i*dt=m—r-i'dt=mi'-di'=d(—mi'~i')
Al ds >

T = Smi-f dW =dT

e f>
f F-dl‘*—*f dT =T>—T1T
] 1

The work performed by the force F in moving
the particle m from positionr to positionr, Is

responsible for a change in the kinetic enerqgy
from 7T,to T..
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A Note (continued):

path II

Fref
V(r) = f F, - dr

path I

r; Tref Iz | Fref Eref
f F{'dr—_’f Fc'dr—|—' F.g'dl"=f Ff‘dr"_f Fr_'-'dr
] Ty Tief

ref T s
=V(r)—Virn)= —(V, -V
The work performed by conservative forces in moving
a particle from r, tor, is equal to the negative of the
change in the potential energy from V, to V,
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A Note (continued):

rs rz ra
ry ry r)

r
T Ty = — (V3 — v1)+f By - dr

|

E=T+V [ Fedr=E-F
Fﬂ{'- 'ii’l' — dE

L |

F, i=E
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6 Elements of Analytical Dynamics

6.1 DOF and Generalized Coordinates
6.2 The Principle of Virtual Work

6.3 The Principle of D'Alembert

6.4 The Extended Hamilton's Principle

6.5 Lagrange's Equations
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THE EXTENDED HAMILTON'S
PRINCIPLE

(i) -
f (5T — 8V +8W ,.)dt =0,
i

2
f oLdt=0, 0 =0, [ _-_T_V
f)

Hamilton's principle  Lagrangian



THE EXTENDED HAMILTON'S PRINCIPLE

Use the extended Hamilton's principle to derive the equatlons of motion for

the two-degree-of-freedom system. T
J
T = Tu-‘!‘Tmt L "
I 5 L3, i 1mL3 ., o\
=§m LIQ -I-LlLaﬁ'lﬂ':-cﬂS(ﬂ? 1)+ oy 5 —I—E 3 91 1

1 : . 3.
=§m %Hf + Ly L2018 cos(fa — 01+ ?29%

L

Fepmr
V =f (—mgj)-dre = —mg)-ro

re

e

: L
=mg [Lp[l —cosf) + —2?-(1 — CO8 I'L'g]:l =mgih

oW, =F-frg =Fi-§ [(L] sinfh + Losints)i— (Lycosf + Lacosts }J]
=F(L1cost160) + Lacosthdfh) = ©160) + G206 = Q16g1 + Q2042

B
0, =0=FLicosty, O2=07=FLycosth
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THE EXTENDED HAMILTON'S
PRINCIPLE

oL I1La . oL .
5T =mL20,60; + 2 162 cos(02 — 01861 + 1 cos (82 — B1)50;

mL3 .

—-I'rj'l HISIH{E}’;—HI}’EH}E_[}IH+ 3

E?gf-ﬁ':ﬂ

L LiLs,
=7 ;Lj' 6162 sinf{fr — 6,)86; — = 1: = 0165 sin(fz — 0,)802

. 4. . 1. LA .
+mi.q [L131 |- %—ﬂzcﬂﬂ{ﬁz — E}[}]Eﬁl +mla [TIHI cos(fy — )+ %H’g} il

I
5V =mg (L| sin @66, + ?1 Sinﬁgﬁﬂg)

s
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THE EXTENDED HAMILTON'S
PRINCIPLE

I3

(6T — &V + 6 Wy )dt =f H:mL]LE 818, sin{fy — ;) —mg Ly sind

£

“

h

L L. .
+ FIL cﬂ331]591 - [— e 21 = 016 sin(0> — 01) — mi—z sinfs + FL:cos ﬂz:léﬁg

R + Ly, Lo, ] .
+m L [LJE] | T"ﬂgccrﬁfﬂg_—ﬂ[}]rﬁﬂl +mLa I:?IH] cos(fr — 01+ fﬂj]bﬂg] di =0

Only the virtual displacements are arbitrary.
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THE EXTENDED HAMILTON'S
PRINCIPLE

. . fa.
f ni.g [L]Hl-l-*—l'}':t:(‘ﬁiﬂg ﬂ[}] A dt =ml. I:Ljﬂl—l—?gﬁ'gc:ﬂsfﬂg—ﬂl}] &y
I| . =

I3

I

2 d . La. ,
—f ml]— [Ltﬂ] - ——rﬂgc[}&;(ﬁlg—ﬂ']jl] ot di
t di 2

fz Lo _ La. . .
.= -—f ml. [Llﬁl + TE;CGS{&': — 1) — ?91{91 — #1)sin(f — ﬂ|]] o di
Fl

Iz

fx I L. . | L. Lo .
f mila l:—zllﬂlc:ns(ﬂg — )+ ?Zﬂg] Sbhdt =mLy [%-‘?1 cos(fy — 0 )+ ué:“iﬁ'g] &ty
4|

T

f2 d [ Ly, La.
— oo | 4 —= Al dt
.[] mL"dI [ > 91 cos{@» — 81) + 3 5'1] g

f Ly L. . : La..
= —f mia [?lﬂ[ cos(fy — ) — éﬂ]{ﬂj—ﬂl}ﬂin{ﬂg—31}-5——251:!:5!'5'1{:{1‘
i

s
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THE EXTENDED HAMILTON'S
PRINCIPLE

ofy =68 =0Datt =1, 1.

2 o [.1L mibq L
f {-—]:mLfﬁl it Ewms{ﬂg ) — L2
‘ 2 2

4L
+mglsinf) — FLlcﬂs-ﬂl]ﬁfFl [m Sy
m

ﬂ'», sin(th — )

mL3 ..
5 G cos(fy — 1) + 3 )

miala.
+ 1&£732

L
02 sin(fy — 01) + —o—=

sin oy — FLECQSHE}{E'QE } dt =10

L1 L
in ]t-h m E[E?Ensifh—ﬂ]} Hﬂsmiﬁg—&l}]—l—mghsmﬂl =FLjcosth
LL mL3 .. Ly .
n 21 = |:-5'1LUbfﬂ1—E[}+Hl hl]l{ﬂg—ﬁ'ﬂ] 33#55;4—”1‘?’2 2 sinf =F Ly cos &
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LAGRANGE'S EQUATIONS

For many problems the extended Hamilton's
principle is not the most efficient method for
deriving equations of motion:

» Involves routine operations that must be
carried out every time the principle is applied,

* The Integrations by parts.

The extended Hamilton's principle is used to
generate a more expeditious method for deriving

equations of motion, Lagrange's equations.
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LAGRANGE'S EQUATIONS
T=T{q.92.- - :qn-q1, 42, --- ,qn)

o7 =3 (Gt g,

k=1
AV
V=Vigi.92,... .q,) 51’:2—5%
; = 9qk
oW Qrogs

1 _ aT
i ar= "3 [(2 2 ) o
ﬁ ( ne) Z a'{f.i: ﬂq&: Qr ) g P Gi dk

n k=
ﬁ{}'kzﬂ'? k_l,z._, L =n, I
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LAGRANGE'S EQUATIONS

29T ff! aT d aT 2 f‘? d ( o1 )
— — | Ogr dt
i 3 t di _ aqk

—dqgpdt = — — g dt =——dqy
gk
2
bgp =0, k=12,....n; t=h,1 =>=—f d (Hr)lﬁfi‘kdf k=1,2,.
iy

1 a"?k I?_J::ﬂrf
dt \ dg;

n n av d [ aT
— Qk——(—.')]ﬁ pdi =0
fn = [3% Gk dr \og ) ] ™

d of di dV
A
di \ dgp dgr O
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LAGRANGE'S EQUATIONS

Derive Lagrange's equations of motion for the
system

d [ aT ar oV
— ) e ] e — ""-—=':"_"} ,k=1,2
dt (HE;;;) 30, 5o, K

L |
V =mg {Lnil —cosfl )+ —,,—2(1 —msﬂzJ]

aV aV mgf,g
— = pitg Ly 510y, =
a6 &+ 5L i

OWye = FLicost 60y + FLacosth ot
= = FlLicosty, ©: = FLscosf
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LAGRANGE'S EQUATIONS

1 L3
T=cm|L L1607 4 L1 L2816y cos(0r — 01) + 3’1'5’%}
aT . mLiLa
—— =mlLif) + 2 )y cos(0z ~ 0
el o 2 R
o7  mLyLa, mL3
— §1 cos(8 — 61) + 19
5‘_5‘3 7 1 (2 1)

T oy

; (gﬂ )=m.f_.75f| + lef [02c05(62 —61) —62(62 — B1) sin(62 — 01)]
1

| qu

I
d(;i) mly == [B1 cos (6 — 61) — b1 (B2 — 61)sin(6, — 61)

s
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LAGRANGE'S EQUATIONS

1 L3

T=cm|L L163 + L1 L2662 cos(0r — 1) + 3’1'5’%}
3T  mLiLs . 0T _ _mLiLy,
R 0164 sin(fa — 0 E'ﬂﬂmﬂ—ﬂ
26, 5 182 sin( o 1) ﬂﬂg 3 b2 sin{tlz —67)

5 mil Ly - H2 i
m L0+ [¢2 cos(By — 1) — 03 sindeh — 61) ]+ mg Lysinty =F L cos o

2

mL; .L_E[.‘}I{IJ-E(EQ -E) + E-?f sin(fy — 6]+ f#?f::fj'l—F miL: sinfly =F Ly cosb;

s
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Final word:

Lagrange's equations are more efficient, the
extended Hamilton principle is more versatile.

In fact, it can produce results in cases in which
Lagrange's equations cannot, most notably in the
case of distributed-parameter systems.
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/.Multi-Degree-of-Freedom Systems
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7.1 EQUATIONS OF MOTION FOR
LINEAR SYSTEMS

Q) Qicalt) Q1) Qis(t) On(t)
- -

————

fz.:. ' - - i
q1(t) qi-1(t) qit) gi1(t) gu.(t) |
— . s - i - i
LA - ki Kit1 ko1 [

—AAAA ﬁ & ,—4\/\;\;\,—%
mi ﬁ//&\:miFI_E__ m; - iy -' iy __II___

47
A c . C;i y B
. . 5
1 H I L] . n
o e R T T TR P —— e e R s e ——— — S S ————
28 T L S F A Y P, PEEEYRT L ivanud
FramEading 2in FERTAT S SaRaat vt fhe etett F S e T e T

e A A R T S T Er T B ST L AR L S LR AR
. PR R AL A VL S L SRS P AR AR A, Shmmepu el edn TR T eyt IS

BrEres DI

D _Umij () +ciyd (0 +hijg ;0] = Qi) i =12,

j=1
Mmi; =mji, Cij = Cji, kij = Kji,

M=M" c=cl K=K"T
Mq(t)+Cq(r) + Kq(r) = Q1)
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7.2 FLEXIBILITY AND STIFFNESS
INFLUENCE COEFFICIENTS

The stiffness coefficients can be obtained by
other means, not necessarily involving the
equations of motion.

» The stiffness coefficients are more properly
known as stiffness influence coefficients, and

can be derived by using its definition.

There I1s one more type of influence coefficients,
namely, flexibility influence coefficients.

» They are intimately related to the stiffness
Influence coefficients.
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7.2 FLEXIBILITY AND STIFFNESS
INFLUENCE COEFFICIENTS

;:_,\AA#% AN ml —\ANN— —" AN mj e AATA Ay W/L\NV\/\‘ mn
X :l b-ui
X »7 Ll TF

We define the flexibility influence coefficient a;
as the displacement of point x;, due to a unit

force, F;= 1. no
Ui — E a,ng
B



7.2 FLEXIBILITY AND STIFFNESS
INFLUENCE COEFFICIENTS

The stiffness influence coefficient K;; is the force
required at x; to proaduce a unit displacement at
point x;, and displacements at all other points are
zero.

» To obtain zero displacements at all points the
forces must simply hold these points fixed.

H .
Fi=) kiju;
j=1
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7.2 FLEXIBILITY AND STIFFNESS
INFLUENCE COEFFICIENTS

laijl=A, lkj;]=K
u=AF F=Ku
u=AF = AKu

A=K 1 K=AaA"1



Example:

- 1 1 1 .
k1 k1 k1
1 1 1 1
A= —+ _ _—

- k1 + ko ~ko 0
K = —k> ko +ky —ki
0 —k3 k3
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7.3 PROPERTIES OF THE STIFFNESS
AND MASS COEFFICIENTS

The potentlaloenerqy of a single linear spring:
V:f Fed( = / (— kC)dC—%ku =3 Fu

i

By analogy the elastic potential energy for a

system is: VZ;W:_;_;EW
1 n n Y 1 n o on
VZEZH,; Zkijuj uZZZkI,u;uJ
i=1 j=1 lﬂlj_:I
" L U LN
=150 S )3 S S
i=1 j=1 i=1 j=1
.

School of Mechanical Engineering
Iran University of Science and Technology



Symmetry Property

ww7//L —AMWWVH I YW VWA A WM m,
I EERt—. ¥ ;l - U;
-« - - u?

1Fu — 1a”F2

]. - rl,llf —— 2 P 2
| —'zF,;”j = _—a”F-
2 2
VFjull + Fiu's + L Fu) = Yaj; F7 +a;i Fj Fi + }aii

aij I F; = &ijng
o
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Maxwell's reciprocity theorem:
Aij = aji ——b
k;‘j =kﬁ', ,j=1, 2,... N

, A=A', K=K"
V =1lu'Ku V = IFT AF
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7.4 LAGRANGE'S EQUATIONS
LINEARIZED ABOUT EQUILIBRIUM

d (dT\ 8T av _
_—(_‘) | | =0, k=1,2,...,n
dt \ gy dgr  0qi

T'=1T(q, QQ ,,,,, Gns 41,42, Gn) V=V(q1.q2, .. . qn)

aF
6WHC_ZQk5qk QkViSC: —, k: 1,2,;.. fl
3qx
Rayleigh's di tion functi
ay elg S ISSIpa 10N TUNctuon \

d (0T 8T oV oF
( : ) + f— =0, k=1,2,...,n
dt \ 0gy dgr Oqr Oqr |

Scho IfM chan IEg ing
I[ran Uni yofSc dT chnology




7.4 LAGRANGE'S EQUATIONS
LINEARIZED ABOUT EQUILIBRIUM

Qk(f)““%k qrt), k=1,2,.
Qk(f)—-qk(f) k=1, 2, .

oo 02T | .o 1
=TT = 1 S,

i=1 j=1 94i99 |g=q, i=1 j=1
. 2
mij=mj; = , Lj=1,2,...,n
| 861186]j q=q, | "



7.4 LAGRANGE'S EQUATIONS
LINEARIZED ABOUT EQUILIBRIUM

V=Vig)+ ; |
(qe) Zaqz » gi + 5 ;;8%8% q_qe
_—V(qE)_‘—‘Zan . q;‘|‘ LL&]QI&]
=q =1 j=1
3%V |
kfj:kjfz ,i,j=1,2,...,n
aq;aQJ f=(¢
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7.4 LAGRANGE'S EQUATIONS
LINEARIZED ABOUT EQUILIBRIUM

n - F=5 chwéif}j
z“—l j=1
Z(mfjéi +CIJCJJ +kijg;)=0;,i=1,2,...,n
=1
M@0 +Ca) + Kq = Q)
T=1q Mq
S = %chq oW, . = QTéq
V=1q"Kq



7.5 LINEAR TRANSFORMATIONS.
COUPLING

M)+ Kq(t) = Q(t)
q(z) =Un()
qQ() =Un(), 4@) = Un{)
MU+ KUn(t) = Q(r)
My (t) + K'n(t) = N(r)
M=U'MU=M"' K'=U"KU=K'"
N()=U" Q)



Derivation of the matrices M'and K' In a
more natural manner

T=1iq4'Mq4 v=1q"Kq
q(t) = Un(1) _
=10 (OM'n(), V=in" K 'n(t
M=U"MU=MT K'=U'KU=K"T

My D+ K@y = N;@©) j=1,2,....n
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7.6 UNDAMPED FREE VIBRATION.
THE EIGENVALUE PROBLEM

Mq()+Kq(r) =0

n ) -
Y mijGi )+ Y kijqit)=0,i=1,2,....n
j=1 -j=1

- S nchro'nous motion
/ y
qj(t) :ujf(t) Jj=172..

(I)Zmuu}—l—f(t)ZkUuJ =0,i=12,,

j=1 J=1



7.6 UNDAMPED FREE VIBRATION.
THE EIGENVALUE PROBLEI\/I

S, . Z(ku Amu)uj =0,
"‘f(t)'— = ,i=1,2 n J=1 i=12,.
f(t)_zm_.u_’ T,
=l | f(t)'I‘Af(t):O
f(t) = Ae™ | |
52_'_)\:() f(I)ZAleWI . Aze—lwt |
S £(t) = Ceos(wt — ¢)
Si =+ =) . — 4w




7.6 UNDAMPED FREE VIBRATION.
THE EIGENVALUE PROBLEM

Ku = w?’Mu
. Aw?) =det[K —w*M] =0

characteristic polynomial
W) Swp < -0 < Wy
In general, all frequencies are distinct, except:

» In degenerate cases,
= They cannot occur in one-dimensional structures;

= They can occur in two-dimensional symmetric
structures.
"
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7.6 UNDAMPED FREE VIBRATION.
THE EIGENVALUE PROBLEM

Ku, =wau,.j r=1,2,....,n

The shape of the natural modes Is unique but
the amplitude is not.

A very convenient normalization scheme
consists of setting:

T aq+ “
. Murzl,_ r=172,...,n
2

ufKur:wr, r=1,2,...,n



7.6 UNDAMPED FREE VIBRATION.
THE EIGENVALUE PROBLEM

Q) =u,f.(t), r=1,2,...,n

fr(t)zcrcos(wrt_qbr): = ]-321-" , 1l

A=Y g0 = wft)=Uf@
- r=1 r=1



Free vibration for the initial excitations

Q1(1) | . (1) Q5(1)
| q1(1) L G2(1) __.... Q3( t)
A — ——WWW—) VWV
& m : mo s

T " S R 0
PR Tav Mt«?ew‘?ﬁ o e ®

qil) =qo
2 —1

[|2’+]T

K=k| -1 3 =2 | uy

i

““““““““““““““““““

{ﬂ} =

o O

.
=




Free vibration for the initial excitations

= 22wl | WP - 6—w +

03

Aw?) = [K —w?M] =

| 2k —Wim

—k

—k  3k—w’m

0

2k 2(k—w?m) |
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Free vibration for the initial excitations
3 3 |
qit) =Y _u fr(t) = ) Cruycos(wrt — ;)
r=1 =] |

" 0.4626

| -
=C1} 0.8608 jcos(0.3731,/ —t—¢1)
- 1.0000 | LA
- - 1.0000 ™
: k
+Cr | 0.2541 |cos (1.3213\/—r—q52)
- —03407 | " _

[ —0.4728 . A
+C3 | 1.0000 | cos (2 0285\/:1‘—9153)
~0.3210 "
) |
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Free vibration for the initial excitations

q(0) = {

1.0000

—0.3407

—0.4728 1
+C3 1.0000 [cospz=qo| 2 |
| —0.3210 1 3

0.4626 10000 |
0.8608 |cosgy+Co 0.2541 - { cos ¢

k
0.3731,/ —C;
m

0.8608

T 0.4626 | 7 i
singd +1.3213,/ —C»
4y

- 1.0000 |

| k
+2.0285,/ —C»
- m
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- —0.4728 |
1.0000 [sing3=

- —0.3210
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1.0000

(0.2541
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Free vibration for the initial excitations

P1=¢2r =3 =0
C1 =2.7696q0, C2 = —0.4132g9, C3 = —0.2791q0

(] 12812 ] o | 04132 ] T
x(1)=qoq | 2.3841 |cos0.3731,/—t+| —0.1050 |cos1.3213,/ —1
| 2.7696 i 0.1408 "

C 0.1320 | .
+1 —0.2791 }c0s2.0285,/ —1t ¢
0.0896 m
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7./ ORTHOGONALITY OF MODAL
VECTORS

Ku, =w:Mu,, Ku,=w’Mu
u/ Ku, =w?u’ Mu,
ﬁfKuS ='w§ufMuS
(w? —wHu! Mu, =0

}"_

T I .
n’ Mu, =0,0Ku, =0, r #5



7./ ORTHOGONALITY OF MODAL
VECTORS

ufM-uS = Oy, uﬁzﬂKll,jr — wfém, r,s = 1,2, S

KU =MUZSQ

U'MU =1 U'KU =



7.8 SYSTEMS ADMITTING RIGID-BODY

MOTIONS
T = %(Iﬁ%—l—[gé%—l—[gé% = %QTMQ

V = Llk1(02 — 01)* +ka (03— 02)°1 = 10" KO

Iy 0 0
M=| 0 L 0
| 0 0 Iz
[ ke —ky 0 |
K=\ —k{ ki+ky —ko
0 ke k|
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7.8 SYSTEMS ADMITTING RIGID-BODY
MOTIONS @ =6y=01 1 117

ki —k; 0 ][ 1
KOg=0q| —ki ki +ky —ks I | =0
0 —k ) 1
OI MO = 0y(1,0; + L, + 1,03) = 0

1,61 (1) + L6 (1) + 1363 (t) = 0|

The orthogonality of the rigid-body mode to the elastic modes is equivalent to the
preservation of zero angular momentum in pure elastic motion.

0y = — L, — ¢
3 — 13 1 .13 2
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7.8 SYSTEMS ADMITTING RIGID-BODY
MOTIONS

=[6; 6 631 O =[6; )7

1 0
_ / _ o 1
6=C6" C=| i
L L I A

=10 MO=16" CTMCO = 16" M'§

I
V=10"K0o = %Q’TCTKCB’ =10"K'9



7.8 SYSTEMS ADMITTING RIGID-BODY
MOTIONS

I [ (L +1) LD
| Ll LD (L +15)
K'=C'KC =
1 [ ki I + ko I? —ki F+ k(L +13)

I3 i —k11?,2+k211(12+13) ki I3 + ko (I + 13)?

Kf@f —_ WZMJ'@!
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7.8 SYSTEMS ADMITTING RIGID-BODY
MOTIONS

L[ 212 I 2 1
f—__ —
M_I[ 1’ 212}_1[1 2]

1T 2k1Y kI 2 1
f____ e _ -
k= 12[ kI 5kI? ] k[ 175 ]
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7.9 Decomposition of the Response In
Terms of Modal Vectors n

T
X=[x1 X2 ... X,] =foe;;
i=1

[ 1 ] 0 ] |
o : .
Gi=1 . |»€=
U | O
_0_
0
Ch = :
_1_.|
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7.9 Decomposition of the Response In
Terms of Modal Vectors

The modal vectors are orthonormal with respect
to the mass matrix MV,

n

UH=ciuyy +oom +...+c,u,; = Zcrur

=1

u,

crzufMu, r=1,2,...,n

un=Uc
c=UTMu, Qe=UTKu

School of Mechanical Engineering
Iran University of Science and Technology
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/.10 Response to Initial Excitations by
Modal Analysis

Mq(t)+Kq(t) =0

n
q() =) 7w,
=1 |
0, (1) =l Mq(1), win.(t) =u; Kq(®), r =1,2,...,n
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/.10 Response to Initial Excitations by
Modal Analysis

a0 =) 9 Ov s q) =Un()

r=1
Modal Coordinates

O+ Q@) =0
() +win () =0, r=1,2,....,n

N (1) = Cr cos(wyt — @y )

2 (0
= 1n,{(0) cosw,t ir{ _)_Siﬂwrh
| - Wy




/.10 Response to Initial Excitations by
Modal Analysis

- - 1

(1) =ul Mq(0)cosw,t + —ul Mq(0)sinw,t,
S Wy

r=1,2,...,n

a(t) = [u Mq(0)cosw,t + w——uf Mq(0) sinw,t]u,

r=1 4
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/.10 Response to Initial Excitations by
Modal Analysis

We wish to demonstrate that each of the natural
modes can be excited independently of the other;

q(0)y =oug, q(0) =0

q(t) = [ Mq(0)cosw,t + ;uf Mq(0)sinw,t]u,

H
q(t) = o Z[ufMuS COSw,t]u,
r=1 L

r=1
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/.11 Eigenvalue Problem in Terms of a

Single Symmetric Matrix
Ku=w’Mu
M=LL" Ku=uw?LL u
L'u=v
AV =)V, A\ =w’
A=LT'K@LHT = AT

T T
vy vy = Ors, Vo AV, = NOpg, 1,5 =1, 2, ...
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7.12 Geometric Interpretation of the
Eigenvalue Problem

f -—XTAX_. E E Qi XiX;
n=72 3:—_1 j=1
f = x! Ax = a11x1 +a22.x2 +2a12x1x0 = 1
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7.12 Geometric Interpretation of the

Eigenvalue Problem
af/oxy | L +
Vf = floxi | _ 5| anxi+anx

vf

i 8f/3x2 } I aA12X1 142X _
a a X
-9 11 12 1 — JAX
a2 ax || x2 |
X2

Vf =2)\x /

AX = AXx C/ f
AN | f=x"Ax =1

School of Mechanical Engineering
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7.12 Geometric Interpretation of the
Eigenvalue Problem

Solving the eigenvalue problem by finding the
principle axes of the ellipse.

X = Ry

q

cosf —sinb
sinf  cos®

R =

RIR=RR' =1

School of Mechanical Engineering
Iran University of Science and Technology



7.12 Geometric Interpretation of the
Eigenvalue Problem

f=x"Ax=y RTARy=y" Dy =1

Transforming to canonical form implies
elimination of cross products:

D = R! AR = diag[d, d-]
D=A,  R=V
R A B | vl

School of Mechanical Engineering
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/.12 Geometric Interpretation of the
Eigenvalue Problem

A1 = ay1c0s” 0+ 2ay; sin @ cos @ + ay sin” 6
A = ajysin® @ — 2a15 sin 8 cos 8 + ar cos’ #
0= — (all — agz) sinfcosd +a12(cos2 f — Si]ﬁl2 9)

sin26 = 2sinffcosé 'and cos 20 = cos? 8 — sin? 0,

School of Mechanical Engineering
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/.12 Geometric Interpretation of the
Eigenvalue Problem

Obtaining the angle, one may calculate the
eigenvalues and eigenvectors:

A\l = aj1 cos® 0 +2ay, sin 0 cos 0 + ayy sin® 6

Ao = aqqsin” 0 — 2a1, sin 8 cos 0 + ar cos? b

| | [0039 ] " _sinf
V) = , Vo = | |

sin ¢ cosd

— d

School of Mechanical Engineering
Iran University of Science and Technology



/.12 Geometric Interpretation of the
Eigenvalue Problem

Example: Solving the eigenvalue problem by
finding the principal axes of the corresponding

ellipse.

1 0 rf 2 -1
M“m[o R " 3]

MO

Aot 0 2 —-1}'1 ]
L0 12 (] -1 3 (10 1/4/2

Scho IfM chan IEg ing
I[ran Uni yofSc dT chnology



/.12 Geometric Interpretation of the
Eigenvalue Problem

| 2 =12
A —= | — (* L/T
o ] A=wmt
2a12 i 1 1
6 — S S P
tan 26 o an b_au—w \/E'C_Z(a” ;122)—4
i Cq1/2
P < | =0.816497
cop 2 2B2 42 T
sin & - b |
1 —— = —U. 0
2(b%+c)V2 cosh 02773

School of Mechanical Engineering
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/.12 Geometric Interpretation of the

Eigenvalue Problem

Al = ayy 0082 € + 2ai>sinfcosf +ax sin” ¢
=25 |

A2 = a1 8in” 6 — 2ay2 sinfcosf 4+ ary cos @
— 1 |

v [ cos® T_[ 0816497
L= sing | 7| —0.577350 |-

o

o _[ —sin6 7 _T 0577350
270 cos® || 0.816497

School of Mechanical Engineering
Iran University of Science and Technology
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/.13 RAYLEIGH'S QUOTIENT AND ITS
PROPERTIES

Ku, =\Mu,, \, =w?, r=1,2,....n

b

-
2 4, Ku,
" ul Mu,’

Ar =W r=1,2,...,n

u! Ku
ul Mu

Rw) = A= W =
Rayleigh's quotient

School of Mechanical En gineerin g
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/.13 RAYLEIGH'S QUOTIENT AND ITS
PROPERTIES

H




7.13 RAYLEIGH'S QUOTIENT AND ITS
PROPERTIES o

w/Ku JUTKUe ¢TAe D

R = — ==
2
Z‘%‘

T uTMu JTUTMUe e

UMU =1, UTKU=A i~
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/.13 RAYLEIGH'S QUOTIENT AND ITS
PROPERTIES

)\r Z )\i 6?

i=1 " "
L £y
R = — = ()\r+ > )\fe?)(l—- > 63)
2 = —
1+ Z ¢ %75?1“ | I#rl’
i=1
[ £r
fl
~ 2
— )\r +ZO\1 AF)E;
i—1 -

School of Mechanical Engineering
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/.13 RAYLEIGH'S QUOTIENT AND ITS
PROPERTIES

Of special interest in vibrations Is the fundamental
ﬂequency

NM—I—Z(A _)\1)‘5 —Pp R > )\
i =72

Rayleigh's quotient is an upper bound for the
lowest eigenvalue.

Al = mm R(u) = min-

School of Mechan IE g ing
Iran University ofSc dT chnology



/.13 RAYLEIGH'S QUOTIENT AND ITS
PROPERTIES

Example:
1 0 0 ] 2 —1 0 ]
M=m|] 0 1 0 |, K=k| -1 3 =2
0 0 2 0 2 2

F:C[ml m?2 FH3]T == [1 Z]T Simulates gravity loading

-1 - - — m

2 -1 o] [t 1 4
u=_ -1 3 =2 L =7 1
| o -2 21 |2 B

School of Mechanical Engineering
Iran University of Science and Technology



/.13 RAYLEIGH'S QUOTIENT AND ITS

PROPERTIES
, uw!'Ku 27k

R =w* =

k
= = 0.1399—
u/ Mu  193m m

/ [ k
w = 0.3740 —k— w1 =0.3731,/ —

Exact solution

w—wi  0.3740—0.3731
w1 0.3731

= 0.002412 =0.2412%

School of Mechanical Engineering
Iran University of Science and Technology



/.13 RAYLEIGH'S QUOTIENT AND ITS
PROPERTIES

"~ 0.3522 [ 03300
u=1| 06163 |, u;=| 0.6155
- 0.7044 | 07152

o —uy ||
RN

— \/(u —u))T (u—wu;) =0.0239 = 2.39%

School of Mechanical Engineering
Iran University of Science and Technology



/.14 RESPONSE TO HARMONIC
EXTERNAL EXCITATIONS

Mq(t) +Cq(r) + Kq(r) = Q1)

Q(Z’) — Qoeiﬁkf q(f) — qogir:}:t
(—a*M +iaC + K)qoe'™ = Qgpe'™
Z(Io)qo = Qo

ZGia) = —a’M+iaC+K
Q=2 "(ia)Qo



/.14 RESPONSE TO HARMONIC
EXTERNAL EXCITATIONS

q =2 '(ia)Qq
Z Yia)=Gla)
q(t) = G(ia)Qpe'™

This approach is feasible only for systems with a small
number of degrees of freedom.

For large systems, it becomes necessary to adopt an
approach based on the idea of decoupling the equations

of motion.
“
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/.15 RESPONSE TO EXTERNAL
EXCITATIONS BY MODAL ANALYSIS:
Undamped systems

Mq(t) + Kq(t) = Q()
Ku=w"Mu UTMU = 1. U"-"KU = Q
q(1) = Zm (D, =U n(t)

F=1

(1) + Qn(0) =N@)



/.15 RESPONSE TO EXTERNAL
EXCITATIONS BY MODAL ANALYSIS

() +Qn(t) =N@)
N =U"Q()
i () +wrn. (1) = Npo(0), r=1,2,...,n

N.(t)=u/Q@), r=1,2,...,n



7.15 RESPONSE TO EXTERNAL
EXCITATIONS BY MODAL ANALYSIS
Harmonic excitation

s 11

Q(r) = Qpcosat
N,(t) =ul Qpcosat, r=1,2,....n
T
u. Qo |
(1) = —- 2c:ft:)sc:ut,, r=172....
Wy —
-l ' T
| u, QO
q(t) = Z 5 Wrcos ot
¥ .

r=1

Scho IfM chan IEg ing
I[ran Uni yofSc dT chnology



7.15 RESPONSE TO EXTERNAL
EXCITATIONS BY MODAL ANALYSIS:
Transient Vibration

: 1 t.- |
N (t) = —f N t—7m)ysinw.7dr, r=1,2,...,n
Wr JO |

School of Mechanical Engineering
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/.15 RESPONSE TO EXTERNAL
EXCITATIONS BY MODAL ANALYSIS:
Systems admitting rigid-body modes

ﬁr(I)ZNr(I),_Fz1,2,__-_,;'
| tE oy . |
' JO LJO 1 |

rr pT7 7
q)= > uf ]0 fo Q(o)do |dT
S S _ T
+ Z —-Lf Q(t — 1) sinw, 7 dT
r=i-+1 L Wr Jo | =

School of Mechanical Engineering
Iran University of Science and Technology



/.15 RESPONSE TO EXTERNAL
EXCITATIONS BY MODAL ANALYSIS:
Systems with proportional damping

C=aM+ 3K
U'CU =U" (aM + BK)U =
aU' MU +BU" KU = ol + 322

() + (ol + B82)0(1) + QL) = N(2)
Q = diag(wf w5 ... w?)
a—l—ﬁwf =2Gw,, r=1,2,...,n

School of Mechanical Engineering
Iran University of Science and Technology



7.15 RESPONSE TO EXTERNAL
EXCITATIONS BY MODAL ANALYSIS:
Harmonic excitation

e (1) + 2w, (1) +win, (1) = No.(1), r=1,2,...,n

Q(t) = Qpe'™
N, () =ul Qg e’m, r=1,2,.

u, QO f
T}r(t)—' ) 2 eﬂ’ff
Wy« —l-IzQerf

q(t) = Z u, Qo u,e'

w? — o +i2(wra

r=1

Scho IfM chan IEg ing
Iran Uni yofSc dT chnology



7.15 RESPONSE TO EXTERNAL
EXCITATIONS BY MODAL ANALYSIS:
Transient Vibration

My (f) =
Wdr

t | . |
[ N, (t — T)erc*"“”’"r Sinwg, T d,
o

war =(1—CHY2%0,, r=1,2,....n

School of Mechanical Engineering
Iran University of Science and Technology
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7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING

q(t) = q(r)
Q) =~-M'Cq(t) ~-M'Kq(t) + M 'Q()

X(t) = Ax(t) + BQ(7)

A= ----- e = = - ’B: - - -




7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING

Q) = 0. Nonsymmetric
X(I) — AX([)
(1) =e™x



7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING: Orthogonality

T fh -
/

Left elgenvectors Right elgenvectors

AX; =/\in_., | = 1;2,..._,2?’1
yiA=XNy:, j=12,...,2n

T ' T

" Axi = Ay T x

T T ‘ J
yj Axf — )‘jy] Xi

=

School of Mechanical Engineering
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7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING

()\g — )\j)y?xi =) —»

T
Y ANFALLj=1,2,...,2n
T .
y; Ax; =0, .
y:
The right eigenvectors x; are
biorthogonalto the left _, X2
eigenvectors y; | -




7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING

Bilorthonormality Relations
Uxi =6 ViAX = Nbij, i,j=12,...,2n

yl j J=412,...,

Ty
1{;-}_(_}—1 AX =XA | YTAX=A
xyT =7 ATY=YA A=XAY'

The bi-orthogonality property forms the basis for a
modal analysis for the response of systems with
arbitrary viscous damping.

School of Mechanical Engineering
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7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING
Assume an arbitrary 2n-dimensional state vector:
v= Xa
a=Y'v Aa=Y"Av

The expansion theorem forms the basis for a

state space modal analysis: n
X(t) = £ ()X +E2()Xg +.... + € (X2 = Zfr (1%,
= X&(1)

Scho IfM chan IEg ing
I[ran Uni yofSc dT chnology



7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING

X(1) = Ax(1) + BQ(?)
YIXED =Y AXED + YT BQG)

() =A&(t)+n()

n(t) = YTBQ(t)



7.16 SYSTEMS WITH ARBITRARY VISCOUS
DAMPING: Harmonic Excitations

Q(7) = Qge'™

ne(t) =y, BQoe'™
gr(t) — Er(ia)fiﬁta

§r (1) = /\rgr(r) "_f@r(t): |
ia—X\)E,(ia)e'® =y} BQe'™,
¥, BQq

r=1,2...,2n

School of Mechanical Engineering
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7.16 SYSTEMS WITH ARBITRARY VISCOUS
DAMPING: Harmonic Excitations

YI'BQp .
fr(l‘): -r Q[}e“lf-
[0 — A,
n T
B
X(t) — y?" __QD relﬂff
— [0~ Ay



7.16 SYSTEMS WITH ARBITRARY VISCOUS
DAMPING: Arbitrary Excitations

E(8) = ME () +n, (D),
SE, () — & (0) = Ar By (5) + Ny (5),
fr(oz) — yEX(O),, r=1,2,...,2n

&) =LV E(s) = o
'\rtﬁr(o)-l-/ Arll— T)nr(T)dfr

0



7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING

4

£(t) = eME(O) + f NI (r)dr

0
n(r) =Y BQU)  £0)=Y"x(0)

x(1) = XM €(0) + / XA n(r)dr
) .

A
x(1) = XeMYTx(0) + / XAy BQ(r)dr
()



7.16 SYSTEMS WITH ARBITRARY

VISCOUS DAMPING
2 3

4 [
M =T +tA+—A"+—A+. ..

pA 3]
| 2
{
XMyl = xyT L1 XxAYT + EXAYTXAYT

l‘3
+§XAYTXAYTXAYT—{—...



7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING

4
X(1) = XeMYTX(O)—Ff XAy BQ(r)dr
0

S t
x(1) = e’ x(0) [ e2=7) BF(T)dT

\0/

The state transition matrix



7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING

Example 7.12. Determine the response of the system to the
excitation: 0y (1) =0, Q2(1) = Qoltre(t) — (t — Nee(t — 4)]

=10 =0 3

cir+c2 —o 1.6 -0.8
Y N o 01
ki1 +k k 5 | 4 > | 2
_ | K1tk —R2 | _ —4 | |
K "‘|: ~ky ko ]‘“'i 4 4 ] - QI(I) —> QZ(t)
1 K ky
VY m ——A\NNNA— m
= L™
Cq 2
-_Q @‘ Q%%Q

School of Mechanical Engineering
Iran University of Science and Technology



7.16 SYSTEMS WITH ARBITRARY
VISCOUS DAMPING

X(1) = [g1()) ¢2(1) 412) O x(0) = 0.

| O o0 1 0
| 0 o 1 {_| 0 0o 0o 1
e T —1 _5 4 —1.6 0.8 |
MK i -M7lCc 2 -2 04 -04
- "0 0 ] IR
=N |V
- - _O 05_ / r(s)
0
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