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Introduction

The motion of distributed-parameter systems is 
governed by partial differential equations:
 to be satisfied over the domain of the system, 

and 
 is subject to boundary conditions at the end 

points of the domain. 
Such problems are known as boundary-value 

problems.
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RELATION BETWEEN DISCRETE AND 
DISTRIBUTED SYSTEMS: TRANSVERSE 
VIBRATION OF STRINGS

Ignoring 
2nd order 
term
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DERIVATION OF THE STRING VIBRATION 
PROBLEM BY THE EXTENDED HAMILTON 
PRINCIPLE

EOM

BC’s
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FREE VIBRATION. THE DIFFERENTIAL 
EIGENVALUE PROBLEM

On physical grounds
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FREE VIBRATION. THE DIFFERENTIAL 
EIGENVALUE PROBLEM
The differential eigenvalue problem
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FREE VIBRATION. THE DIFFERENTIAL 
EIGENVALUE PROBLEM
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The free vibration of beams in bending:

The differential eigenvalue problem:
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Simply Supported beam:
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Uniform Clamped Beam:
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Uniform Clamped Beam:
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The spring supported-pinned beam

Characteristic equation
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The spring supported-pinned beam
 = 
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ORTHOGONALITY OF MODES. 
EXPANSION THEOREM
Consider two distinct solutions of the string 
eigenvalue problem:
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ORTHOGONALITY OF MODES. 
EXPANSION THEOREM

To demonstrate the orthogonality relations for 
beams, we consider two distinct solutions of the 
eigenvalue problem:
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Orthogonality relations for beams
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Orthogonality relations for beams
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Expansion Theorem:
Any function Y(x) representing a possible displacement of 
the system, with certain continuity, can be expanded in 
the absolutely and uniformly convergent series of the 
eigenfunctions:

The expansion theorem forms the basis for modal 
analysis, which permits the derivation of the response to 
both initial excitations and applied forces.
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SYSTEMS WITH LUMPED MASSES AT 
THE BOUNDARIES: Rod with Tip Mass

By means of the extended Hamilton's principle:
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SYSTEMS WITH LUMPED MASSES AT THE 
BOUNDARIES: Beam with Lumped Tip Mass
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SYSTEMS WITH LUMPED MASSES AT THE 
BOUNDARIES: Beam with Tip Mass
By means of the extended Hamilton's principle:
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SYSTEMS WITH LUMPED MASSES AT THE 
BOUNDARIES: Beam with Tip Mass
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EIGENVALUE PROBLEM AND EXPANSION 
THEOREM FOR PROBLEMS WITH LUMPED 
MASSES AT THE BOUNDARIES
The orthogonality of modes:
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a uniform circular shaft in torsion
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Example 8.6. The eigenvalue problem for 
a uniform circular shaft in torsion
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Example 8.7. The eigenvalue problem for 
a uniform cantilever beam with tip mass 
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Example 8.7. The eigenvalue problem for 
a uniform cantilever beam with tip mass

As the mode number 
increases, the end 
acts more as a 
pinned end
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EIGENVALUE PROBLEM AND EXPANSION 
THEOREM FOR PROBLEMS WITH LUMPED 
MASSES AT THE BOUNDARIES
Any function U(x) representing a possible displacement of 
the continuous model, which implies that U(x) satisfies 
boundary conditions and is such that its derivatives up to 
the order appeared in the model is a continuous function, 
can be expanded in the absolutely and uniformly 
convergent series of the eigenfunctions:
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RAYLEIGH'S QUOTIENT. VARIATIONAL 
APPROACH TO THE DIFFERENTIAL 
EIGENVALUE PROBLEM

Cases in which the differential eigenvalue 
problem admits a closed-form solution are very 
rare :
 Uniformly distributed parameters and 
 Simple boundary conditions. 

 For the most part, one must be content with 
approximate solutions, 
 Rayleigh's quotient plays a pivotal role.
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The strong form of the eigenvalue 
problem
A rod in axial vibration fixed at x=0 and with a spring of 

stiffness k at x=L.

An exact solution of the eigenvalue problem in the 
strong form is beyond reach, 
 The mass and stiffness parameters depend on the 

spatial variable x .



School of Mechanical Engineering
Iran University of Science and Technology

The differential eigenvalue problem in a 
weak form

The solution of the differential eigenvalue 
problem is in a weighted average sense 
The test function V(x) plays the role of a 

weighting function.
The test function V(x) satisfies the geometric 

boundary conditions and certain continuity 
requirments.

Test function
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The differential eigenvalue problem in a 
weak form

Symmetrizing the left side



School of Mechanical Engineering
Iran University of Science and Technology

The differential eigenvalue problem in a 
weak form: Rayleigh's quotient

We consider the case in which the test function 
is equal to the trial function:

The value of R depends on the trial function
How the value of R behaves as U(x) changes?
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Properties of Rayleigh's quotient

The trial function U(x) differs from the rth

eigenfunction Ur ( x ) by a small quantity of first 
order in                                         and 
Rayleigh's quotient differs from the rth

eigenvalue by a small quantity of second order 
in
Rayleigh 's quotient has a stationary value at 

an eigenfinction Ur(x), where the stationary 
value is the associated eigenvalue.
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Properties of Rayleigh's quotient
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Rayleigh's quotient
A fixed-tip mass rod:

A pinned-spring supported beam in bending:
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Rayleigh's quotient

Rayleigh's quotient for all systems have one 
thing in common:
 the numerator is a measure of the potential 

energy
 and the denominator a measure of the kinetic 

energy.
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A fixed-spring supported rod in axial 
vibration
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A fixed-spring supported rod in axial 
vibration
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Example 8.8. Estimation of the lowest 
eigenvalue by means of Rayleigh's principle
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Example 8.8: a) The static 
displacement curve as a trial function
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Example 8.8: a) The static 
displacement curve as a trial function
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Example 8.8: b)The lowest eigenfunction of 
a fixed-free string as a trial function
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RESPONSE TO INITIAL EXCITATIONS
Various distributed-parameter systems exhibit 

similar vibrational characteristics, although their 
mathematical description tends to differ in 
appearance.
Consider the transverse displacement y(x,t) of 

a string in free vibration

caused by initial excitations in the form of
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RESPONSE TO INITIAL EXCITATIONS

the normal modes
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Example:
Response of a uniform string to the initial 
displacement y0(x)and zero initial velocity.
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Example:
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RESPONSE TO INITIAL EXCITATIONS:
Beams in Bending Vibration
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RESPONSE TO INITIAL EXCITATIONS:
Beams in Bending Vibration

To demonstrate that every one of the natural 
modes can be excited independently of the other 
modes we select the initials as:
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RESPONSE TO INITIAL EXCITATIONS:
Response of systems with tip masses

Boundary conditions

Initial conditions
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RESPONSE TO INITIAL EXCITATIONS:
Response of systems with tip masses

Observing from 
boundary condition
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RESPONSE TO INITIAL EXCITATIONS:
Response of systems with tip masses

Similarly,
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Example:
Response of a cantilever beam with a lumped 
mass at the end to the initial velocity:
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Example:
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Example:

Because initial velocity resembles the 2nd mode
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RESPONSE TO EXTERNAL 
EXCITATIONS

The various types of distributed-parameter 
systems differ more in appearance than in 
vibrational characteristics.
We consider the response of a beam in 

bending supported by a spring of stiffness k at 
x=0 and pinned at x=L.
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RESPONSE TO EXTERNAL 
EXCITATIONS

Orthonormal modes
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RESPONSE TO EXTERNAL 
EXCITATIONS: Harmonic Excitation

Controls which 
mode is 
excited.

Controls the 
resonance.
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RESPONSE TO EXTERNAL 
EXCITATIONS: Arbitrary Excitation

The developments remain essentially the same 
for all other boundary conditions, and the same 
can be said about other systems.
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Example
Derive the response of a uniform pinned-pinned 
beam to a concentrated force of amplitude F0
acting at x = L/2 and having the form of a step 
function.

Orthonormal Modes
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Example
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Stepped Beams

 Free Vibrations of Stepped Beams
 Compatibility Requirements at the Interface
 Characteristic Equations

 Elastically Restrained Stepped Beams
 Multi-Step Beam with Arbitrary Number of 

Cracks
 Multi-Step Beam Carrying a Tip Mass
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FREE VIBRATION OF STEPPED 
BEAMS: EXACT SOLUTIONS

As presented by:
S. K. JANG and C. W. BERT 1989 Journal of 

Sound and Vibration 130, 342-346. Free 
vibration of stepped beams: exact and 
numerical solutions.
They sought lowest natural frequency of a 

stepped beam with two different cross-sections 
for various boundary conditions.
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FREE VIBRATION OF STEPPED 
BEAMS: EXACT SOLUTIONS

The governing differential equation for the small 
amplitude, free, lateral vibration of a Bernoulli-
Euler beam is:

Assuming normal modes, one obtains the 
following expression for the mode shape:
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FREE VIBRATION OF STEPPED 
BEAMS: EXACT SOLUTIONS

For the shown stepped beam, one can rewrite the 
governing equation as:
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Boundary Conditions:
(1) pinned-pinned,

(2) clamped-clamped,

(3) clamped-free,

(4) clamped-pinned,
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Compatibility Requirements at the 
Interface

Stress concentration at the junction of the two 
parts of the beam is neglected. 

At the junction, the continuity of deflection, slope, 
moment and shear force has to be preserved:
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The clamped-clamped beam problem:
Introducing the BCs

Yields: C3=-C1, C4=-C2, C7=-C5 . C8=-C6
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The clamped-clamped beam problem:
Compatibility Requirements

Let:

Then the compatibility requirements yield:
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Characteristic Equations for Other 
BCs 
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Characteristic Equations for Other 
BCs 
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Characteristic Equations for Other 
BCs 
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Characteristic Equations for Other 
BCs 
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Characteristic Equations for Other 
BCs 
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Exact Solutions:
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HIGHER MODE FREQUENCIES AND
EFFECTS OF STEPS ON FREQUENCY
By extending the computations, higher mode 
frequencies were found (Journal of Sound and
Vibration ,1989, 132(1), 164-168):



School of Mechanical Engineering
Iran University of Science and Technology

Elastically Restrained Stepped Beams
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Boundary Conditions and Compatibility 
Requirements at the Interface :
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The Characteristic Equation
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Exact Solutions:
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Extension of the Research Work:
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Extension of the Research Work:
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Extension of the Research Work:
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Extension of the Research Work:
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INTRODUCTION

The problem of lateral vibrations of beams under 
axial loading is of considerable practical interest,
Tall buildings
Aerospace structures
Rotating machinery shafts 

Because of its important practical applications, the 
problem of uniform single-span beams under a 
constant axial load has been the subject of 
considerable study.
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BEAM FLEXURE: INCLUDING 
AXIAL-FORCE EFFECTS

Axial forces acting in a flexural element may have 
a very significant influence on the vibration 
behavior of the member, 
resulting generally in modifications of 

frequencies and mode shapes.

The equation of motion, including the effect of a 
time-invariant uniform axial force throughout its 
length, is:
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BEAM FLEXURE: INCLUDING 
AXIAL-FORCE EFFECTS
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BEAM FLEXURE: INCLUDING 
AXIAL-FORCE EFFECTS

Separating variables:



School of Mechanical Engineering
Iran University of Science and Technology

BEAM FLEXURE: INCLUDING 
AXIAL-FORCE EFFECTS
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Example: A simply supported uniform 
beam

D1=0, D3=0, D4=0.
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BEAM FLEXURE: INCLUDING 
AXIAL-FORCE EFFECTS

Retaining the constant axial force N, the 
governing equation can be used to find the static 
buckling loads and corresponding shapes:
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GALEF Formula
 E. GALEF 1968 Journal of the Acoustical 

Society of America 44, (8), 643. Bending 
frequencies of compressed beams:
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GALEF Formula
A. BOKAIAN, “NATURAL FREQUENCIES OF 
BEAMS UNDERCOMPRESSIVE AXIAL 
LOADS”, Journal of Sound and Vibration 
(1988) 126(1), 49-65
Studied the influence of a constant 

compressive load on natural frequencies and 
mode shapes of a uniform beam with a variety 
of end conditions.
Galef’s formula, previously assumed to be valid 

for beams with all types of end conditions, is 
observed to be valid only for a few.
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GALEF Formula
BOKAIAN showed:
The variation of the normalized natural 

frequency      with the normalized axial force  
for pinned-pinned, pinned-sliding and sliding-
sliding beams is observed to be:
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GALEF Formula
BOKAIAN showed:
Galef’s formula, previously 

assumed to be valid for 
beams with all types of end 
conditions, is observed to 
be valid only for a few.
The effect of end 

constraints on natural 
frequency of a beam is 
significant only in the first 
few modes.
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For pinned-pinned, pinned-sliding and sliding-sliding 
beams, this variation may exactly be expressed as      
0 = 1 + i?. 
This formula may be used for beams with other types 

of end constraints when the beam vibrates in a third 
mode or higher. 
For beam with other types of boundary conditions, this 

approximation  may be expressed as 0 = F 1 + yU (y < 
where the coefficient y depends only on the type of the 
end constraints.
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The study is an investigation of the combined effects of 
compressive inertia forces due to a conservative 

model of steady thrust and
 uniform mass depletion on the transverse vibration 

characteristics of a single stage variable mass rocket.
the effect of the aerodynamic drag in comparison to 

the thrust is considered to be negligible and 
the rocket is structurally modeled as a non-uniform 

slender beam representative of practical rocket 
configurations.
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In the study the typical 
single stage rocket 
structure is divided into a 
number of segments.
Within which the 

bending rigidity, axial 
compressive force and 
the mass distributions 
can be approximated 
as constants.
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The non-dimensional equation of motion for the ith
constant beam segment :
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The free-free boundary conditions are:

and the continuity conditions are
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The variation of frequency 
parameter and cyclic 
frequency versus the mass 
depletion parameter Md for 
the first three modes of 
vibration of a typical rocket 
executing a constant 
acceleration trajectory.
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Advanced Vibrations 

Distributed-Parameter Systems: 
Exact Solutions

(Lecture 17)

By: H. Ahmadian
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SYSTEMS WITH EXTERNAL FORCES 
AT BOUNDARIES

The 2nd of boundary conditions is nonhomogeneous, 
precludes the use of modal analysis for the 

response.
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SYSTEMS WITH EXTERNAL FORCES 
AT BOUNDARIES
We can reformulate the problem by rewriting the 
differential equation in the form:

and the boundary conditions as:

Now the solution can be obtained routinely by 
modal analysis.
Any shortcomings?
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SYSTEMS WITH EXTERNAL FORCES 
AT BOUNDARIES: Example
Obtain the response of a uniform rod, fixed at x=0 and 
subjected to a boundary force at x=L in the form:
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SYSTEMS WITH EXTERNAL FORCES 
AT BOUNDARIES: Example
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System Dynamics in the Feed 
Direction
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System Dynamics in the Cutting Direction
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Modeling Tool as Stepped Beam on 
Elastic Support: Boundary Conditions
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Modeling Tool as Stepped Beam on Elastic 
Support: The compatibility requirements
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Modeling Tool as Stepped Beam on 
Elastic Support
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Modeling Tool as Stepped Beam on 
Elastic Support



School of Mechanical Engineering
Iran University of Science and Technology
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VIBRATION OF PLATES
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VIBRATION OF PLATES

Plates have bending stiffness in a manner 
similar to beams in bending.
In the case of plates one can think of two 

planes of bending, producing in general two 
distinct curvatures. 
The small deflection theory of thin plates, called 

classical plate theory or Kirchhoff theory, is 
based on assumptions similar to those used in 
thin beam or Euler-Bernoulli beam theory.
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EQUATION OF MOTION: CLASSICAL 
PLATE THEORY
The elementary theory of plates is based on the following assumptions:
 The thickness of the plate (h) is small compared to its lateral 

dimensions.
 The middle plane of the plate does not undergo in-plane 

deformation. Thus, the midplane remains as the neutral plane after 
deformation or bending.

 The displacement components of the midsurface of the plate are 
small compared to the thickness of the plate.

 The influence of transverse shear deformation is neglected. This 
implies that plane sections normal to the midsurface before 
deformation remain normal to the rnidsurface even after deformation 
or bending. 

 The transverse normal strain under transverse loading can be 
neglected. The transverse normal stress is small and hence can be 
neglected compared to the other components of stress.
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Moment - Shear Force Resultants:
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Equation of motion
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BOUNDARY CONDITIONS
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BOUNDARY CONDITIONS
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BOUNDARY CONDITIONS: Free Edge

There are three boundary conditions, whereas 
the equation of motion requires only two:

Kirchhoff showed that the conditions on the 
shear force and the twisting moment are not 
independent and can be combined into only 
one boundary condition.
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BOUNDARY CONDITIONS: Free Edge

Replacing the twisting moment by an equivalent 
vertical force.
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BOUNDARY CONDITIONS
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BOUNDARY CONDITIONS
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BOUNDARY CONDITIONS
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FREE VIBRATION OF RECTANGULAR 
PLATES
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FREE VIBRATION OF RECTANGULAR 
PLATES
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FREE VIBRATION OF RECTANGULAR 
PLATES



School of Mechanical Engineering
Iran University of Science and Technology

Solution for a Simply Supported Plate

We find that all the constants Ai except A1 and
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Solution for a Simply Supported Plate

The initial conditions of the plate are:
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Solution for a Simply Supported Plate
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Solution for a Simply Supported Plate
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Solution for a Simply Supported Plate
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Advanced Vibrations 

VIBRATION OF PLATES
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Vibrations of Rectangular Plates

The functions X(x) and Y(y) can be separated provided 
either of the followings are satisfied:
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Vibrations of Rectangular Plates

These equations can be satisfied only by the 
trigonometric functions:
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Vibrations of Rectangular Plates

Assume that the plate is simply supported 
along edges x =0 and x =a:

Implying:
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Vibrations of Rectangular Plates
The various boundary conditions can be stated,

SS-SS-SS-SS, SS-C-SS-C, SS-F-SS-F, SS-C-SS-SS, SS-F-SS-SS, SS-F-SS-C

Assuming:
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Vibrations of Rectangular Plates

y = 0 and y = b are simply supported:
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Vibrations of Rectangular Plates

y = 0 and y = b are simply supported:
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Vibrations of Rectangular Plates

y = 0 and y = b are clamped:
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Vibrations of Rectangular Plates
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Vibrations of Rectangular Plates

Exact characteristic equations for some of classical boundary 
conditions of vibrating moderately thick rectangular plates
Shahrokh Hosseini Hashemi and M. Arsanjani ,International Journal of Solids 

and Structures Volume 42, Issues 3-4, February 2005, Pages 819-853

Exact solution for linear buckling of rectangular Mindlin plates
Shahrokh Hosseini-Hashemi, Korosh Khorshidi, and Marco Amabili, Journal of 

Sound and Vibration Volume 315, Issues 1-2, 5 August 2008, Pages 318-342
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FORCED VIBRATION OF 
RECTANGULAR PLATES

the normal modes
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FORCED VIBRATION OF 
RECTANGULAR PLATES

Using a modal analysis procedure:
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FORCED VIBRATION OF 
RECTANGULAR PLATES
The response of simply supported rectangular 
plates:
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VIBRATION OF PLATES
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EQUATION OF MOTION: Variational 
Approach

To develop the strain energy one may assume the 
state of stress in a thin plate as plane stress:
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EQUATION OF MOTION: Variational 
Approach
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EQUATION OF MOTION: Variational 
Approach

Extended Hamilton's principle can be written as:
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EQUATION OF MOTION: Variational 
Approach

( )∫∫∫ +=
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Green’s Theorem
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EQUATION OF MOTION: Variational 
Approach
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EQUATION OF MOTION: Variational 
Approach
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Distributed-Parameter Systems: 
Approximate Methods

Rayleigh's Principle
The Rayleigh-Ritz Method 
An Enhanced Rayleigh-Ritz Method 
The Assumed-Modes Method: System Response 
The Galerkin Method
The Collocation Method
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RAYLEIGH'S PRINCIPLE

The lowest eigenvalue is the minimum value that 
Rayleigh's quotient can take by letting the trial 
function Y(x) vary at will.

The minimum value is achieved when Y(x) 
coincides with the lowest eigenfunction Y1(x).
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RAYLEIGH'S PRINCIPLE
Consider the differential eigenvalue problem for a string in transverse 
vibration fixed at x=0 and supported by a spring of stiffness k at x=L.

 Exact solutions are possible only in relatively few cases, 
 Most of them characterized by constant tension and uniform mass 

density. 
 In seeking an approximate solution, sacrifices must be made, in the 

sense that something must be violated. 
 Almost always, one forgoes the exact solution of the differential 

equation, which will be satisfied only approximately, 
 But insists on satisfying both boundary conditions exactly.
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RAYLEIGH'S PRINCIPLE
Rayleigh's principle, suggests a way of 
approximating the lowest eigenvalue, without 
solving the differential eigenvalue problem 
directly.

Minimizing Rayleigh's quotient is equivalent to 
solving the differential equation in a weighted 
average sense, where the weighting function is 
Y(x).
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RAYLEIGH'S PRINCIPLE
Boundary conditions do not appear explicitly in 
the weighted average form of Rayleigh's quotient. 

To taken into account the characteristics of the 
system as much as possible, the trial functions 
used in conjunction with the weighted average 
form of Rayleigh's quotient must satisfy all the 
boundary conditions of the problem. 
Comparison functions: trial functions that are as 
many times differentiable as the order of the 
system and satisfy all the boundary conditions.
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RAYLEIGH'S PRINCIPLE

The trial functions must be from the class of 
comparison functions.
The differentiability of the trial functions is 

seldom an issue. 
But the satisfaction of all the boundary 

conditions, particularly the satisfaction of the 
natural boundary conditions can be.

In view of this, we wish to examine the 
implications of violating the natural boundary 
conditions.
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RAYLEIGH'S PRINCIPLE

Rayligh’s quotient involves Vmax and Tref, which are defined for trial 
functions that are half as many times differentiable as the order of the 
system and 
 need satisfy only the geometric boundary conditions,
 as the natural boundary conditions are accounted for in some 

fashion.
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RAYLEIGH'S PRINCIPLE
Trial functions that are half as many times 

differentiable as the order of the system and satisfy the 
geometric boundary conditions alone as admissible 
functions.
 In using admissible functions in conjunction with the 

energy form of Rayleigh's quotient, the natural boundary 
conditions are still violated.

 But, the deleterious effect of this violation is somewhat 
mitigated by the fact that the energy form of Rayleigh's 
quotient, includes contributions to Vmax from springs at 
boundaries and to Tref from masses at boundaries.

But if comparison functions are available, then their 
use is preferable over the use of admissible functions, 
because the results are likely to be more accurate.



School of Mechanical Engineering
Iran University of Science and Technology

Example: Lowest natural frequency of the 
fixed-free tapered rod in axial vibration

The 1st mode of a uniform clamped-free rod 
as a trial function: 

A comparison function
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THE RAYLEIGH-RITZ METHOD
The method was developed by Ritz as an 
extension of Rayleigh's energy method. 
Although Rayleigh claimed that the method 

originated with him, the form in which the 
method is generally used is due to Ritz.

The first step in the Rayleigh-Ritz method is to 
construct the minimizing sequence:

independent trial functions
undetermined coefficients
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THE RAYLEIGH-RITZ METHOD

The independence of the trial functions implies 
the independence of the coefficients, which in turn 
implies the independence of the variations
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THE RAYLEIGH-RITZ METHOD

Solving the equations amounts to determining the coefficients, as well
as to determining
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THE RAYLEIGH-RITZ METHOD
To illustrate the Rayleigh-Ritz process, we 
consider the differential eigenvalue problem for 
the string in transverse vibration:
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THE RAYLEIGH-RITZ METHOD
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Example : Solve the eigenvalue problem for 
the fixed-free tapered rod in axial vibration

The comparison functions
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Example :
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Example : n = 2
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Example : n = 2
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Example : n = 3
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Example : n = 3
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Example : 
The Ritz eigenvalues for the two approximations 
are:

The improvement in the first two Ritz natural 
frequencies is very small, 
 indicates the chosen comparison functions 

resemble very closely the actual natural modes.
Convergence to the lowest eigenvalue with six 

decimal places accuracy is obtained with 11 
terms:
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Truncation 

Approximation of a system with an infinite number 
of DOFs by a discrete system with n degrees of 
freedom implies truncation:

Constraints tend to increase the stiffness of a 
system:

The nature of the Ritz eigenvalues requires 
further elaboration.
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Truncation
A question of particular interest is how the 
eigenvalues                               of the (n +1)-DOF 
approximation relate to the eigenvalues               
of the n-DOF approximation.

We observe that the extra term in series does not 
affect the mass and stiffness coefficients 
computed on the basis of an n-term series 
(embedding property):
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Truncation
For matrices with embedding property the 
eigenvalues satisfy the separation theorem:
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Distributed-Parameter Systems: 
Approximate Methods

Rayleigh's Principle
The Rayleigh-Ritz Method 
An Enhanced Rayleigh-Ritz Method 
The Assumed-Modes Method: System Response 
The Galerkin Method
The Collocation Method
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Distributed-Parameter Systems: 
Approximate Methods

Rayleigh's Principle
The Rayleigh-Ritz Method 
An Enhanced Rayleigh-Ritz Method 
The Assumed-Modes Method: System Response 
The Galerkin Method
The Collocation Method
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Rayleigh-Ritz method (contd.)
How to choose suitable comparison functions, or 

admissible functions:
 the requirement that all boundary conditions, or 

merely the geometric boundary conditions be 
satisfied is too broad to serve as a guideline.

There may be several sets of functions that could be 
used and the rate of convergence tends to vary from 
set to set.
It is imperative that the functions be from a complete 

set, because otherwise convergence may not be 
possible:

power series, trigonometric functions, Bessel 
functions, Legendre polynomials, etc.
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Rayleigh-Ritz method
 Extreme care must be exercised when the end involves a discrete 

component, such as a spring or a lumped mass,
 As an illustration, we consider a rod in axial vibration fixed at x=0

and restrained by a spring of stiffness k at x=L:

 If we choose as admissible functions the eigenfunctions of a uniform 
fixed-free rod, then the rate of convergence will be very poor:

 The rate of convergence can be vastly improved by using 
comparison functions:

.



School of Mechanical Engineering
Iran University of Science and Technology

Rayleigh-Ritz method
Example : Consider the case in which the end x = L of 

the rod of previous example is restrained by a spring 
of stiffness k = EA/L and obtain the solution of the 
eigenvalue problem derived by the Rayleigh-Ritz 
method:

1) Using admissible functions
2) Using the comparison functions
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Example: Using Admissible Functions 
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Example: Using Admissible Functions,    
Setting n=2 
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Example: Using Admissible Functions,    
Setting n=3 
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Example: Using Admissible Functions, 
The convergence using admissible functions is 

extremely slow. 
Using n = 30, none of the natural frequencies 

has reached convergence with six decimal 
places accuracy:



School of Mechanical Engineering
Iran University of Science and Technology

Example: Using Comparison Function
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Example: Using Comparison Function



School of Mechanical Engineering
Iran University of Science and Technology



School of Mechanical Engineering
Iran University of Science and Technology

Example: Using Comparison Function

Convergence to six decimal places is reached by 
the three lowest natural frequencies as follows:
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AN ENHANCED RAYLEIGH-RITZ 
METHOD

Improving accuracy, and hence convergence rate, 
by combining admissible functions from several 
families, 
 each family possessing different dynamic 

characteristics of the system under 
consideration

Free end Fixed end
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AN ENHANCED RAYLEIGH-RITZ 
METHOD
The linear combination can be made to satisfy the 
boundary condition for a spring-supported end
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AN ENHANCED RAYLEIGH-RITZ 
METHOD

Example: Use the given comparison function 
given in conjunction with Rayleigh's energy 
method to estimate the lowest natural frequency 
of the rod of previous example.
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AN ENHANCED RAYLEIGH-RITZ 
METHOD
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AN ENHANCED RAYLEIGH-RITZ 
METHOD
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AN ENHANCED RAYLEIGH-RITZ METHOD
It is better to regard a1 and a2 as independent 

undetermined coefficients, and let the Rayleigh- Ritz 
process determine these coefficients.
This motivates us to create a new class of functions 

referred to as quasi-comparison functions  
defined as linear combinations of admissible 

functions capable of satisfying all the boundary 
conditions of the problem
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AN ENHANCED RAYLEIGH-RITZ 
METHOD
One word of caution is in order: 
 Each of the two sets of admissible functions is complete
As a result, a given function in one set can be 

expanded in terms of the functions in the other set. 
• The implication is that, as the number of terms n 

increases, the two sets tend to become 
dependent.

• When this happens, the mass and stiffness 
matrices tend to become singular and the 
eigensolutions meaningless.

 But, because convergence to the lower modes tends to 
be so fast, in general the singularity problem does not 
have the chance to materialize. 
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AN ENHANCED RAYLEIGH-RITZ 
METHOD

Solve the problem of privious example using the 
quasi-comparison functions
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Example: n=2



School of Mechanical Engineering
Iran University of Science and Technology



School of Mechanical Engineering
Iran University of Science and Technology

Example: n=3
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AN ENHANCED RAYLEIGH-RITZ 
METHOD
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Distributed-Parameter Systems: 
Approximate Methods

Rayleigh's Principle
The Rayleigh-Ritz Method 
An Enhanced Rayleigh-Ritz Method 
The Assumed-Modes Method: System Response 
The Galerkin Method
The Collocation Method
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