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Distributed-Parameter Systems: Exact

Solutions

> Relation between Discrete and
Distributed Systems .

» Transverse Vibration of Strings

» Derivation of the String Vibration
Problem by the Extended
Hamilton Principle

» Bending Vibration of Beams

> Free Vibration: The Differential
Eigenvalue Problem

» Orthogonality of Modes
Expansion Theorem

» Systems with Lumped Masses at
the Boundaries
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» Eigenvalue Problem and
Expansion Theorem for
Problems with Lumped Masses
at the Boundaries

» Rayleigh's Quotient . The
Variational Approach to the
Differential Eigenvalue Problem

» Response to Initial Excitations
» Response to External Excitations

» Systems with External Forces at
Boundaries

» The Wave Equation

» Traveling Waves in Rods of
Finite Length



Introduction

» The motion of distributed-parameter systems Is
governed by partial differential equations:

= to be satisfied over the domain of the system,
and

= |s subject to boundary conditions at the end
points of the domain.

»Such problems are known as boundary-value
problems.
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RELATION BETWEEN DISCRETE AND
DISTRIBUTED SYSTEMS: TRANSVERSE
VIBRATION OF STRINGS
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RELATION BETWEEN DISCRETE AND
DISTRIBUTED SYSTEMS: TRANSVERSE

VIBRATION OF STRINGS
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RELATION BETWEEN DISCRETE AND
DISTRIBUTED SYSTEMS: TRANSVERSE
VIBRATION OF STRINGS
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DERIVATION OF THE STRING VIBRATION
PROBLEM BY THE EXTENDED HAMILTON
PRINCIPLE
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DERIVATION OF THE STRING VIBRATION

PROBLEM BY THE EXTENDED HAMILTON
PRINCIPLE
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DERIVATION OF THE STRING VIBRATION
PROBLEM BY THE EXTENDED HAMILTON
PRINCIPLE
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DERIVATION OF THE STRING VIBRATION
PROBLEM BY THE EXTENDED HAMILTON
PRINCIPLE
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DERIVATION OF THE STRING VIBRATION
PROBLEM BY THE EXTENDED HAMILTON
PRINCIPLE
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BENDING VIBRATION OF BEAMS
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BENDING VIBRATION OF BEAMS

L, O0<x <L
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BENDING VIBRATION OF BEAMS
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BENDING VlBRATlON OF BEAMS:EHP
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BENDING VIBRATION OF BEAMS:EHP
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BENDING VIBRATION OF BEAMS:EHP
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Distributed-Parameter Systems: Exact

Solutions

> Relation between Discrete and
Distributed Systems .

» Transverse Vibration of Strings

» Derivation of the String Vibration
Problem by the Extended
Hamilton Principle

» Bending Vibration of Beams

> Free Vibration: The Differential
Eigenvalue Problem
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» Eigenvalue Problem and
Expansion Theorem for
Problems with Lumped Masses
at the Boundaries

» Rayleigh's Quotient . The
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FREE VIBRATION. THE DIFFERENTIAL
EIGENVALUE PROBLEM
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FREE VIBRATION. THE DIFFERENTIAL
EIGENVALUE PROBLEM
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FREE VIBRATION. THE DIFFERENTIAL
EIGENVALUE PROBLEM

The differential eigenvalue problem
d dY (x)
L PP 4C2
dx ax
Y(0)=0, Y(L)=0

= W p(x)Y (x). O<x<L
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YO | Py =0, 0<x <L, g=F

Y(x) = Asin 8x + Bcos Bx



FREE VIBRATION. THE DIFFERENTIAL
EIGENVALUE PROBLEM
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Example:

)
d%Y (x)
dx2

Y{(x) = Asin 3x + Bcos 3x

Y(0)=0; Y(x)= AsinfSx
dY (x)
dx

T +kY(x)=0, x=1L

r
tan L = ——fpL = -20L
anBL = ——fL = -2
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Example:

T
= 1.8366/
oico ] T
wo,=4.8158
2 pL2

T
w3="7.9171
3 pL2
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The free vibration of beams in bending:

9% [
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2

—,64Y(x)=0, O0<x<L; 64= _c;_;n

dx?

Y (x) = Asin8x + Bcos3x + C sinh 8x 4+ D cosh Sx
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Simply Supported beam:
Y (x) = Asin8x + Bcos3x + C sinh 8x 4+ D cosh Sx |
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Uniform Clamped Beam:

Y(x) = Asin8x + Bcos3x + Csinh 8x + Dcosh 5x
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Uniform Clamped Beam:

lambda
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The spring supported-pinned beam
V(XL0h

- 3
m, EI k—ZSEI/L
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> Characteristic equation
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The spring supported-pinned beam
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ORTHOGONALITY OF MODES.
EXPANSION THEOREM

Consider two distinct solutions of the string
eigenvalue problem:

dci[ (x )dY (x)} Wy p(X) Y (x), *5*[ (x)dY (x)] wfp(x)Ys(i);
L dY Y, L
f T(x) > () d¥y (x) dx = w, f o(x)Y,(x)Y, (x)dx
0 dJC dx 0
L dY,(x) d¥; L
] T2 ats ), f 0(x)Y, ()Y, (x)dx
0 dx dx 0

L
f ()Y, () Vs (x)dx =0
0
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ORTHOGONALITY OF MODES.
EXPANSION THEOREM

L L 2 |
/ p(x)Yf(x)dx =1, f T (x) IidYr (x)] dx = w?,
0 0 dx

r,s=1,2,...; wf;éwf

L
[ p(x)Y, (x)Ys(x)dx = Ops,
0 |

L
f Py @ NG ,
0

X = 26”
dx dx




ORTHOGONALITY OF MODES.

EXPANSION THEOREM

To demonstrate the orthogonality relations for
beams, we consider two distinct solutions of the

eigenvalue problem:
d*

dx
d2

[EI( )— ;(x)} = wm(x)Y,(x), 0 <x <L
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Orthogonality relations for beams
| L d? l: r(x)] 2 . |
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Orthogonality relations for beams

L d2Y.(x) d*Y, (x)
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Expansion Theorem.

Any function Y(x) representing a possible displacement of
the system, with certain continuity, can be expanded in
the absolutely and uniformly convergent series of the

elgenfunctions. o

Y(x) =) e (x)

r—=1

L
o =[ mx)Y,(x)Y(x)dx, r=1,2,...
0

The expansion theorem forms the basis for modal
analysis, which permits the derivation of the response to
both initial excitations and applied forces.
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SYSTEMS WITH LUMPED MASSES AT
THE BOUNDARIES: Rod with Tip Mass

O o Ly
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SYSTEMS WITH LUMPED MASSES AT
THE BOUNDARIES: Rod with Tip Mass

By means of the extended Hamilton's principle:

[ (6T — 6V +EW 0)dt =
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SYSTEMS WITH LUMPED MASSES AT
THE BOUNDARIES: Rod with Tip Mass
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SYSTEMS WITH LUMPED MASSES AT
THE BOUNDARIES: Rod with Tip Mass
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SYSTEMS WITH LUMPED MASSES AT THE
BOUNDARIES: Beam with Lumped Tip Mass
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SYSTEMS WITH LUMPED MASSES AT THE
BOUNDARIES: Beam with Tip Mass

By means of the extended Hamilton's principle:
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T(t):'éfo m(x)[ 31 ]d +§M[ a1 ]
1 L 02y(x, 1)1
V(t):ij(; EI(x)[ 52 } dx

o) ) L 82 dz L, f
f OT (t)dt :-—f [[ m(x) ya(;: 1)532(.1: Hdx+M B(t )5}*(11.,{)] dt
1 2] 0

92y(x,t) By(x,t) 5 0%y (x, 1 )} .
5V(I)=Ef(x) ) 0 . 0—-5[5’[() Oy(x, f)U
L 22 2
| +f Bi [EI( )8 y(x )}6}:@: r)dx
0

School of Mechanical Engineering
Iran University of Science and Technology



SYSTEMS WITH LUMPED MASSES AT THE
BOUNDARIES: Beam with Tip Mass

2 L 2 2 8%y (x, .
/t <_[ {W(J'C)8 Y — flx, )+ 3 2 [EI(X) y(x2 t)]}ﬁy(x,l‘)dl'
. ) dx dx

Jt2

3%y(x,t) 9y(x,1) 82y(x,t)58y(x,t)

— ET
B dx? d ox x:L+ &) 0x2 0x  |,_o
K El(x)azy(x,t) _Mazy(x,t)}éy(x )
Bx 8x2 | 8t2 , i:L
_9 El(x)a Y, t) Sy(x,t) )dt=0
0Xx 8)62 x=0
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EIGENVALUE PROBLEM AND EXPANSION
THEOREM FOR PROBLEMS WITH LUMPED
MASSES AT THE BOUNDARIES

zf"(——— X _»l-_h u(x t)
<~  L_{ | 82u(x, 1)
1 ey om EA) M ﬂEA<x)a“(“) =M e
- L > |
2
E_[EA(x)au(x,t)] et —m)” u(x D oeror
ax ax
u(x,t) =CU (x) cos(wt — q‘))
___d_ [EA(x)dU(x)} = wzm(x)U(x), O<x< L
dx dx "
Ux) 5 _
U0)=0 FA(x ) I =w'MU(x), x=1L1L
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EIGENVALUE PROBLEM AND EXPANSION
THEOREM FOR PROBLEMS WITH LUMPED
MASSES AT THE BOUNDARIES

The orthogonality of modes:

d dU, (x)

‘3;[“( ) ax

] :w%m(x)Ur(x) —Ed*[EA( )

X

dU(x)

X

] = wim(x)Us (x),

d

L dU, (x)
*f Us(0) 7 | EAG)
O ,

X

dU,(x) ]

L
:ldx—-wf m(x)US(x)U,.(x)dx
0

) _
—[ Us<x)—‘3— EA()
0 x

dU, (x) L+ fL dUS(x)EA( )dU ()
0 0 dx

) | L dU (x) dU, (X)
= _w,,MUS(L)U,.(L)Jr/ EA(x) ¥
“Jo X dx

dx

=—-Us;(x)EA(x)
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EIGENVALUE PROBLEM AND EXPANSION
THEOREM FOR PROBLEMS WITH LUMPED

MASSES AT THE BOUNDARlES
f EA U@ dUs) o o [ m(x)U, () (x)dx+MU (L)U(L)
0 0

r

dx dx Jo | i
-

L - oL |
f EA(x)d(j(x) AU f mG)Uy () U, (x)dx + MU, (LU (L)
0 X dx L Jo

S

L _
(wf —?) U m(x)Ur(x)Us(x)dx+MU,,(L)US(L)} —
s _

L
] m(xX)U, (x)U;(x)dx+ MU, (L)YUs;(L) =
0

L dU,(x) dU,
[ EA(x) d(x) (x)dx::wfém, r.s=1,2,...
0 - x  dx
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EIGENVALUE PROBLEM AND EXPANSION
THEOREM FOR PROBLEMS WITH LUMPED
MASSES AT THE BOUNDARIES

a a | d }(JC f) o y(x,t)
B 1\1/"}“? T G
oy (x,t
v =0, X0 _o o
e 52 92y (x, 1) ” 92y (x, 1)
| y(x, y
- L > —_ =
| P [EI() ]Jrf( 1) =m(x) YRR
y(x,t) = CY(x)cos(wt — ¢)
2 2 '
= [EI 0 Y(x)] =’ m(x)Y (x),
dr x2
v =0, T o r=0
2Y (x) d o d2Y (x) |
d°Y (x a4 )| 2. o
El(x)‘ 72 =0, T [El(x) I ]_w MY(x), x =1L
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EIGENVALUE PROBLEM AND EXPANSION
THEOREM FOR PROBLEMS WITH LUMPED
MASSES AT THE BOUNDARIES

L 2 2 -1 L | - .
f Ys(x)_d_._[El(x)d X dx = w? [ m(x) Y (x) Y, (x)dx
0 dx? 0 ; |

dx?
L 4’ d*7,(x)]
fOYS(x)Eﬁ[EI(x) 72 _dx
_{Y )i[m szr(x)] g LGSO, d2Y<x>]
= Y@= | EI()— }0 [dx ) 0
b d?Ys(x) r
+/0 e .EI( ) o

d*Y.(x) d?Y, (x)
dx? dx?

L
=ML LLW+ [ B dx
0
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EIGENVALUE PROBLEM AND EXPANSION
THEOREM FOR PROBLEMS WITH LUMPED
MASSES AT THE BOUNDARIES

L 2 2
[ E1E @Y, o [ m(x)Y, (x)Y(x)dx+MYr(L)YS(L)]
0 dx? dx?  JO

L d*Y,(x) d*Y, (x) i
EI = w?
fo N B

L
] m(x)Y, () Ys(x)dx + MY, (L)Y, (L)}
o

_ L
(Wi —wy) U m(x)Y, (x)Y3(x)dx +MYr(L)YS(L)] —
0 |

L
/ M) Y ()Y, (x)dx + MY, (L)Y(L) = 6,
0 : .

L 2 2
/ ElGx )d Y, (x)d Y(x) g
0

5 B |
72 12 = w; 6_”., r,s=1,2,...
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Example 8.6. The eigenvalue problem for
a uniform circular shaft in torsion

d d© | '
61 2N 21 mew), 0 <x <L
dx dx 0
x .
=0  GIM=2l =wpew)
X x=L
2 FA°Ox)=0,0<x <L, 3 =7
& (x) = Asinfx + Bcosfx
®0)=0 » B =0.
dO(x) B%Ip 1
|, =T oW » anfl = o
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Example 8.6. The eigenvalue problem for
a uniform circular shaft in torsion

lglm/

tanf3L, 1/8L , 1 |

i ' i

d -0 L ®=08903) %

oy 0(x)
] ! 1} _.
| : L
0 BL E /ﬁzL 3n /ﬁaL Sn X : G
. ’ 0 G @,=13.4256 9/
| L ™2 12
-1} ' -
03(x)
1-7 .
s X _ ./ GJ
0 \/L 03 = 6.4373 12
1l | |
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Example 8.7. The eigenvalue problem for
a uniform cantilever beam with tip mass

y(x,t)

di;;gm -3 (x) =0, 0<x<lL, Bt = \l/ﬂxﬂ
o EARRAAEY
Y(x)=0, Jx =0, x=0 +__JL——+ m(x) El(x) S M/mL=1.
g 13 >
d:iil;(;) =0, dBdY(?’X) B4Y(J¢) =0, x =

—(14cosBLcoshFL)Y+ BL(sinBLcoshBL —sinh3LcosBL) =0

sin 3, I. +sinh 3, L
cos Oy L +cosh 3, L

Yo(x) = A, |:sin 3,x —sinh 5, x — (cos fJ}x — coshﬁrx)]

School of Mechanical Engineering
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Example 8.7. The eigenvalue problem for
a uniform cantilever beam with tip mass

As the mode number N -
increases, the end = o,
w =15573/ £ 0 | ;
acts more as a SR T _ L
pinned end | | ll’z(x)/\
mz:'16.2501 /_mE;L ol _.\Lx
S 1) )
1 :
3= 50.8958 /mE£4 0 /

_1}

School of Mechanical Engineering
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EIGENVALUE PROBLEM AND EXPANSION
THEOREM FOR PROBLEMS WITH LUMPED
MASSES AT THE BOUNDARIES

Any function U(x) representing a possible displacement of
the continuous model, which implies that U(x) satisfies
bounaary conditions and Is such that its derivatives up to
the order appeared in the model is a continuous function,
can be expanded in the absolutely and uniformly
convergent series of the eigenfunctions.

U(x) =) erUn()
. 4
C, =f m)YU, (DU x))dx +MU,.(LHYU(L), r=1,2,...
0

School of Mechanical Engineering
Iran University of Science and Technology



Distributed-Parameter Systems: Exact

Solutions

> Relation between Discrete and
Distributed Systems .

» Transverse Vibration of Strings

» Derivation of the String Vibration
Problem by the Extended
Hamilton Principle

» Bending Vibration of Beams

> Free Vibration: The Differential
Eigenvalue Problem

» Orthogonality of Modes
Expansion Theorem

» Systems with Lumped Masses at
the Boundaries

School of Mechanical Engineering
Iran University of Science and Technology

» Eigenvalue Problem and
Expansion Theorem for
Problems with Lumped Masses
at the Boundaries

» Rayleigh's Quotient . The
Variational Approach to the
Differential Eigenvalue Problem

» Response to Initial Excitations
» Response to External Excitations

» Systems with External Forces at
Boundaries

» The Wave Equation

» Traveling Waves in Rods of
Finite Length
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Distributed-Parameter Systems: Exact

Solutions

> Relation between Discrete and
Distributed Systems .

» Transverse Vibration of Strings

» Derivation of the String Vibration
Problem by the Extended
Hamilton Principle

» Bending Vibration of Beams

> Free Vibration: The Differential
Eigenvalue Problem

» Orthogonality of Modes
Expansion Theorem

» Systems with Lumped Masses at
the Boundaries

School of Mechanical Engineering
Iran University of Science and Technology

» Eigenvalue Problem and
Expansion Theorem for
Problems with Lumped Masses
at the Boundaries

» Rayleigh's Quotient . The
Variational Approach to the
Differential Eigenvalue Problem

» Response to Initial Excitations
» Response to External Excitations

» Systems with External Forces at
Boundaries

» The Wave Equation

» Traveling Waves in Rods of
Finite Length



RAYLEIGH'S QUOTIENT. VARIATIONAL
APPROACH TO THE DIFFERENTIAL
EIGENVALUE PROBLEM

»Cases in which the differential eigenvalue
problem admits a closed-form solution are very
rare :

= Uniformly distributed parameters and
= Simple boundary conditions.
» For the most part, one must be content with
approximate solutions,
= Rayleigh's guotient plays a pivotal role.

School of Mechanical Engineering
Iran University of Science and Technology



The strong form of the eigenvalue
problem

» A rod in axial vibration fixed at x=0and with a spring of
stiffness k at x=L.

—E— [EA(x)dU(x)} = mx)U(x), 0<x < L; A\ = w?
dx dx | -
U0) =0, -—EA(x) Ulx ) - =kU(L)
X x=L

» An exact solution of the eigenvalue problem in the
strong form is beyond reach,
* The mass and stiffness parameters depend on the

spatial variable x .
"
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The differential eigenvalue problem in a
weak form

L L
—f VoL {EA(x)dU(x)]dx _ A/ m)V(x)U (x)dx

\ Test function

» The solution of the differential eigenvalue
problem is in a weighted average sense

» The test function V{x) plays the role of a
weighting function.

» The test function V{x) satisfies the geometric
boundary conditions and certain continuity
requirments.

School of Mechanical Engineering
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The differential eigenvalue problem in a
weak form

L L
—f V(x)—%— I:EA(X)M:IdX = )\/ m(x)V{x)U(x)dx
1] ax " dx 0 _

Symmetrizing the left side

I3 L
- f - EA(x)dZ(x) AU e + RV (LU L) = A f m(x)V (U (x)dx
0 x  dx - 0

School of Mechanical Engineering
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The differential eigenvalue problem in a
weak form. Rayleigh's quotient

»\We consider the case in which the test function
IS equal to the trial function:

L , 2 -
f EA(x)[dg(x)] dx +kU2(L)
0 X

RU) = A= o? — :
f m(x)U?(x)dx
0

» The value of R depends on the trial function
»How the value of R behaves as U(x) changes?

School of Mechanical Engineering
Iran University of Science and Technology



Properties of Rayleigh's quotient

| L
X I [ m(x)Ui(x)Uj(x)dx:(Sij, i, j=1,2,...
Ux) = E ciUi(x) :: ’ |
L . ) .
;=1 | f EA(X)dUE (X) dUJ(X) dx—l—kUz(L)UJ(L) =)\g(5ij
v Jo dx dx

R(Cl,CQ, )= )\i—_wz

o0

L d - dU;
[OEA(X)Z al (X) Z Jdlf;)fx)dx—kaczU (L)ZCJU (L)
=1

j=1
..IL
/0 m(x) E c;U; (x) E CJU](x)dx

j=l1
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Properties of Rayleigh's quotient
R(C‘l,(i'z,. )=A%=w2

chlcj U EA( )dU ) dY; ) —l—ka;(L)Uj(L)}

=1 o dx dx
ZZC;c]f m(x)U; (x)U; (x)dx
o i=1 j=1
o0 00 00
ZZCiCj/\féfj Zcf)\;
ZZC;CJ;CSI']' | Zcf
i=1 j=1 i=1
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Properties of Rayleigh's quotient
c,,,:e*;-cr,i-—12 r—-lr—l—l

2/\+Z_2,\ /\+Z

: z#r | z;ér
R= ~ = — =
Cf—l—Zc? .1‘]“26?
1=] i=1
L F£Y | 1y
o0 oG _ oC
~ (A s ?/\;-)(1_ 3 2) =0 13— A)E
=1 i=1 i=1 ,_
[ Fr i#r
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Properties of Rayleigh's quotient

»The trial function U(x) differs from the rth
eigenfunction U, ( x ) by a small quantity of first
order e, or U{x) = U, (x)+ O(e), and
Rayleigh's quotient differs from the rt

eigenvalue by a small quantity of second order
in €,or R =M\ + O0(e?).

» Rayleigh 's quotient has a stationary value at
an eigenfinction U,(x), where the stationary
value Is the associated eigenvalue.

School of Mechanical Engineering
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Properties of Rayleigh's quotient

r=1,
REA+) (i~ ADe
i=2 ~

R > A
A\ =wi =minR(U) = R(U;)



Rayleigh's quotient

A fixed-tip mass rod:

L 2
/ EA(x)[dZ(x)} dx
RU)=\=w? =20 r

L _
f m(x)U?(x)dx + MU?*(L)
0

A pinned-spring supported beam in bending:

L - 72 2
/ EI) | Y(Zx)] dx +kY?(0)
0 dx '

-

RY)=A=w’= 7
] m(x)Y?(x)dx
0 -

School of Mechanical Engineering
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Rayleigh's quotient

»Rayleigh's quotient for all systems have one
thing In common:

* the numerator is a measure of the potential

energy
= and the denominator a measure of the kinetic
energy.
Vi
R=)\=uw*=
Tref

School of Mechanical Engineering
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A fixed-spring supported rod in axial
vibration

Tu(x, )]’
0x

] J

L N
T(t)—_:%/o m(x) | Bu(x,t)] dx

1 rk ]
V(t)-:—f EA(x) dx + —ku*(L, 1)
2 0 | 2

| ot



A fixed-spring supported rod in axial

vibration
u(x,t) =U(x) cos(wt — )

X

1 L | dU (x) )
V(t)=§{f0 EA(x)'l: ~ ]d +kU (L)}COS (wr-—qb)

— V.. cosZ (Wt — &) |
2

. | |
T(t) = -“-;— [ [O m(x)Uz(x)dx] $in® (Wt — @) = W Tyer sin® (wt — @)

Vmax

Tref

R:/\:wz;

Scho IfM chan IEg ing
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Example 8.8. Estimation of the lowest
eigenvalue by means of Rayleigh's principle

1
y(ﬁfz‘)\ p, T

kL/T =

an T e el a
LEvesgra LN E R

LT v ) T4 |
Tf [AS20 FNREYeS
R=w"= 0 L dx .

L
%, f Y 2_(,1:)::3,1:
- V0 R
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Example 8.8: a) The static
displacement curve as a trial function

d?Y (x)
T (X)ng,O{x<L
dx? ~

1
P& 2

Y (x) =c1x 42
(x)=cix+cp 5T

dY |
Y0)y=0,T d(x) FkY(x) =0, x=1L




Example 8.8: a) The static
displacement curve as a trial function
SpgL  1pg 5 _ ngz[ 5x }_(f_)z]
6 T 2T T

Py = ,
) 67 "2 \L

2 - 2 7\ 2 2
pglL S o x pgL~ 5 1
T ——+—=) dx+tk|— —— 4 =
) ( )/ (6+L) *r ( T ) ( 6" 2

Ww- =
L? 5x 1 /x\27
(%) [ T
%_7—-|-~-1- | 552=w29/T ﬁL—m=1.8487i
= L 3679 2 —3. 4177 |Ie= ﬁLﬁlflL - 184817836168366 =0.0066 =0.66%
ﬂ 1080 ———————————— !
o
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Example 8.8: b)The lowest eigenfunction of
a fixed-free string as a trial function

. X
Y (x) =sin —
_ 21
rmNe [P, mx a\2 L
- T(—r—) [ cos” —dx +k T(—) “ 4k
> 2L 0 2L . 2L/ 2 +
: —d P
p[{) Sin 77 X >

= +/3.4674 = 1.8621 :

[
[
| BL-— ﬁlL 1.8621 —1.8366
[

= 0.0139 = 1.39% |
BiL 1.8366 ’
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Distributed-Parameter Systems: Exact

Solutions

> Relation between Discrete and
Distributed Systems .

» Transverse Vibration of Strings

» Derivation of the String Vibration
Problem by the Extended
Hamilton Principle

» Bending Vibration of Beams

> Free Vibration: The Differential
Eigenvalue Problem

» Orthogonality of Modes
Expansion Theorem

» Systems with Lumped Masses at
the Boundaries

School of Mechanical Engineering
Iran University of Science and Technology

» Eigenvalue Problem and
Expansion Theorem for
Problems with Lumped Masses
at the Boundaries

» Rayleigh's Quotient . The
Variational Approach to the
Differential Eigenvalue Problem

» Response to Initial Excitations
» Response to External Excitations

» Systems with External Forces at
Boundaries

» The Wave Equation

» Traveling Waves in Rods of
Finite Length
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Distributed-Parameter Systems: Exact

Solutions

> Relation between Discrete and
Distributed Systems .

» Transverse Vibration of Strings

» Derivation of the String Vibration
Problem by the Extended
Hamilton Principle

» Bending Vibration of Beams

> Free Vibration: The Differential
Eigenvalue Problem

» Orthogonality of Modes
Expansion Theorem

» Systems with Lumped Masses at
the Boundaries

School of Mechanical Engineering
Iran University of Science and Technology

» Eigenvalue Problem and
Expansion Theorem for
Problems with Lumped Masses
at the Boundaries

» Rayleigh's Quotient . The
Variational Approach to the
Differential Eigenvalue Problem

» Response to Initial Excitations
» Response to External Excitations

» Systems with External Forces at
Boundaries

» The Wave Equation

» Traveling Waves in Rods of
Finite Length



RESPONSE TO INITIAL EXCITATIONS

»Various distributed-parameter systems exhibit
similar vibrational characteristics, although their
mathematical description tends to differ in
appearance.

»Consider the transverse displacement y(x, ) of
a string in free vibration

d dy(x,t) | 3%y(x,t)
ax[T() ax ]“p() 312

caused by initial excitations INn the torm ot

dv(x, t)
ot

O<x<L

= Vp(X)
f=—0)

y(x,0) = yo(x)

School of Mechanical Engineering
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RESPONSE TO INITIAL EXCITATIONS
Y, 0 =) Y (x)n (1)

r=1 the normal modes

> d dY,(x) dz'r]r(t)

; — [T( ) }w) = Zp(x)Y (x) ,
(L[ anm N a?, (1)
;{ fo Ys(x)c—i;[T(x) - ]dx}m(r)—;[fo p(x)Y(A,)Y(x)dx:l 3

ﬁr(t)+wf77r(r) =0, r= 1,2,
)

sin W, t,

1y (t) = n-(0) cosw,t + I

- Al . _ . L _ |
’r)r(O):f ()Y (x)yo(x)dx, M- (0) =[0 Ppx)Y,(x)vo(x)dx,

School of Mechanical Engineering
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Example:

Response of a uniform string to the Initial
displacement y,(x)and zero initial velocity.

A X Yolx)

—, O0<x<a
a

A
1—-(L——x) a<x<1L

yo(x) =

y(x, 1) = ZY ()7 (£)

Wy =r7 [~ LZ’ Y (x)“/—usm@, r=12,. fOL,o(x)er(x)dx — 1

School of Mechanical Engineering
Iran University of Science and Technology



Example:
()Y = (0)coswt, r =1,2, .

(0) f o) (¥)dx = A2 L T
- — n__,_,
Ty P el —a) " T
(e 1) 2AL? i { » rra “in X o P T .
x,1) = — sin —— $iD —— cOSF 7. | —=
d w2a(L —a) “— r? L

2AL? O (=D e T
X, t)= SIN — COS ¥ | —=1
v, 1) w2a(L —a) Z r2 L pL?

r:]-,3,\t'l

School of Mechanical Engineering
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RESPONSE TO INITIAL EXCITATIONS:

Beams in Bending Vibration
32 3%y(x,t) 82y(x f)
) [EI() o ] m(x)

, O<x < L

X
i r . d? ¥
B - Py dx(x)} r(t)—zm(x)Y(X) is24

= { rt d* *Y, (x)
LA e 0T e

L o 2
= [ / m(x)YS(x)Y,-(x)dx]d )
o |

dt?



RESPONSE TO INITIAL EXCITATIONS:

Beams in Bending Vibration

To demonstrate that every one of the natural
modes can be excited independently of the other
modes we select the initials as:

yo(x) = AY,(x)

L Aforr=p
nr(0) = A/ p(x)Y, (x)Y,(x)dx =
| 0

Acosw,t forr =p
nr(t)z -
Qforr=1,2,...,p—1,p+1,...

y(x,t) = AYp(x)cosw,t

School of Mechanical Engineering
Iran University of Science and Technology

Oforrz1,2,;..,p—1,p+1,...



RESPONSE TO INITIAL EXCITATIONS:
Response of systems with tip masses

[ du(x,1)” %u(x, 1)

— | EA(x = m(x , O<x < L

ax | DA, )5 .
u(0,1) =0

Boundary conditions du(x,t) 0%u(x, 1) o
—EA(X) o =M ¥ , x =1L
Initial conditions | u(x,0) = ug(x), dulx, t) = vp(x)
at  |,_g

School of Mechan IE g ing
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RESPONSE TO INITIAL EXCITATIONS:
Response of systems with tip masses

w0y =" Ur(x)m (1)

S| P R |

r=1

m(x)Us (X) U, (X)dXJ M (1),

L ._ -
f MUy () Us (x)dx = 65 — MU (LU, (L),
0

L
f Us(x)i [EA(x)dUr(x)]dx — [Us(x)EA( )dU (x)]
0 dx dx -

2
— W, Ors
x=L

dx

Z[MU ()i (1) + EAG) ”( ) m]

Observing from ___ r=1
boundary condition o [ azu(x 0 du(x, t)]
| M

x=L

=0
x=L

+ EA
ot (x) ox

School of Mechanical Engineering
Iran University of Science and Technology



RESPONSE TO INITIAL EXCITATIONS:

Response of systems with tip masses
ns(t)‘l'wsns(t) --0 s =1, 2

0
Tls (f) = Ts (O) COS Wy ! - 773 ( SlIl UJS f.,
W

u(x,0) = 3 Uy, (0) = o (x)
s=1

L
773(0)2/ m(x)Us (x)ug(x)dx + MU (L)uo(L),
0 .

Similarly,

L
7'15(0)=] m{x)Us(x)vo(x)dx +MUg(L)vo(L),
0

Scho IfM chan IEg ing
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Example:

Response of a cantilever beam with a lumped
mass at the end to the initial velocity:

aty(x,t)  3%y(x,1)

_EI

A = m a2 ,O<x < L
3y (x,1 0%y (x,t) 8 y(x,1) 3%y (x,1)
X \2 X\ x\4
vgx)=13]2(h) —2322(—)-+926(*)
( L L L
Vo(x)
15 +
10 +
5+ . o o |
0 ' ' | -‘FL X

@-
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Example:

Y, ) =) Y (x)n(t)

. .
m/ Y, (x)Ys(x)dx + MY, (LYY (L) = b5,
0

L 3'-x : _
El{fo Ys(x ) i )dx—[Y( >d;;§ )] _L}zwf&s,
RORRENG —Z{Ys(x) [MYr(x)M)-—EI d;( i (r)]} =0,
r—1 - _ x=I,

| v
ﬁc"‘“”?’?s(f):og s=1,2... n()= 75 (0)

Wy

sinwyf,
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Example:

L
ﬁs(0)=mf Yy (x)vo(x)dx + MYs(L)vo(L)
0 |

—m fo ’ Y, (x) [13.72 (%)2 —2322 (%)3 + 9;26 (%)4]01;; —0.24MY,(L),

M=mlL,
Xy . ' ’ \ . -
_ sin 3, L +sinh 3, L ,
= i — — x —cosh SIN Wy t
y{_(x,t) ZICF [smﬁrx sinh 3, x cos,@rL—kcoshﬁ,.L(cosﬁrx co ﬁrx)] Wy
= . :

C1 = —0.0404, C = 0.7761, C3 = —0.0003,

—

Because initial velocity resembles the 2"4 mode
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RESPONSE TO EXTERNAL
EXCITATIONS

» The various types of distributed-parameter
systems differ more in appearance than in
vibrational characteristics.

»\We consider the response of a beam In
bending supported by a spring of stiffness k at
x=0and pinned at x=L.

8% T 92 t t
—53 EI(x) yix. )] + f(x, 1) =m(x) y(x ) , O<x <L
X
Pyt D y( ) %y (x,t)
B0 " 550 =0 g [P [ sben =0 020y =0, EI0 =2 52 =0, x=1
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RESPONSE TO EXTERNAL

EXCITATIONS

y(x.6) =Y Y, (x)m, (1)
r=1

Orthonormal modes

L
[ mx) Y, ()Y, (x)dx = b5, 1,5 =1,2
A _

.....

L 2 2 _
f Ys(x)dil_ [El(x)d I (x)}dx — wfé}s.
0 o

x2 dx?

iir (1) +win, (1) = N, (1),

L
No(0) = [ Y, (x) £ (x, 1)dx
0
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RESPONSE TO EXTERNAL

EXCITATIONS: Harmonic Excitation
f(x,t) = F(x)cos

; |
N,(t) = [/ Y, (x)F(x)dx] cos 2t = F, cos (2,
0

L | .
Fr:/ Y x)F(x)dx, r=1,2,...
0 |

Controls which
mode IS K F

"
excited. 1) = cos 21,
7?3’( ) W — Q}: Controls the

_ | _ resonance.

o0
(x, 1) = Y, (x) | cos 2t
y(x,1) ng_m ()
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Iran University of Science and Technology




RESPONSE TO EXTERNAL
EXCITATIONS: Arbitrary Excitation

1 i
(1) = —-f N, (t —7m)smw,7dr, r=1,2, ...

y(x,t)._z (x)[ N(t—*r)smwr’rdT

r=1

The developments remain essentially the same
for all other boundary conditions, and the same
can be said about other systems.
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Example

Derive the response of a uniform pinned-pinned
beam to a concentrated force of amplitude £,
acting at x = L/2 and having the form of a step

function f(x.1) = Fab(x — L/2)ee(?)

Orthonormal Modes

/ = ()2 / E[4 Y, (x)-—1/—-——'smr—73, r=1,2,.

L I _
N, (t) = / Y, () £ (x. dx = | —— Foge(t) f sin — §(x — L /2)dx
» 0 mL 0 L

2 o o | 2 -
=) = Fore(t) sin — = (=1)""V7% | = Fyre(t), r = odd
mL 2 ml.
School of Mechanical Engineering
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Example

1 t ' —1 (r——l)/ZF 2 | )
N (1) = —"—f Ny (I—T)Slﬂerd’T—— ( -) L / et — T)SINW,TdT
1 (r— 1)/2F
( ) U (l — COSWyl)
(—_I)U—WZFO mL* [ 2 , [EI |
) 7TV L cos{r) . mL4t , r =odd

- o0 \(r—1)/2 14 A ' |
(D D2RymLd 2 rmx o2 | El
y(x,t) = ZYr(x)nr () = Z  rm)? El mL > A 1 __COS"(F?T) mL4t

r=1,3,.

PR} o (—DUDZ gy L, [EI
— . —— | 1 —cos(; —t

T4E] r__; r4 - L | S(rm) m L4

Q

l School of Mechanical Engineering
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Distributed-Parameter Systems: Exact

Solutions

> Relation between Discrete and
Distributed Systems .

» Transverse Vibration of Strings

» Derivation of the String Vibration
Problem by the Extended
Hamilton Principle

» Bending Vibration of Beams

> Free Vibration: The Differential
Eigenvalue Problem

» Orthogonality of Modes
Expansion Theorem

» Systems with Lumped Masses at
the Boundaries

School of Mechanical Engineering
Iran University of Science and Technology

» Eigenvalue Problem and
Expansion Theorem for
Problems with Lumped Masses
at the Boundaries

» Rayleigh's Quotient . The
Variational Approach to the
Differential Eigenvalue Problem

» Response to Initial Excitations
» Response to External Excitations

» Systems with External Forces at
Boundaries

» The Wave Equation

» Traveling Waves in Rods of
Finite Length



Advanced Vibrations

Distributed-Parameter Systems:

Exact Solutions
(Lecture 15)

By: H. Ahmadian

ahmadian@iust.ac.ir



Stepped Beams

» Free Vibrations of Stepped Beams
= Compatibility Requirements at the Interface
= Characteristic Equations

» Elastically Restrained Stepped Beams

» Multli-Step Beam with Arbitrary Number of
Cracks

» Multi-Step Beam Carrying a Tip Mass

School of Mechanical Engineering
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FREE VIBRATION OF STEPPED
BEAMS: EXACT SOLUTIONS

As presented by:

»S. K. JANG and C. W. BERT 1989 Journal of
Sound and Vibration 130, 342-346. Free
vibration of stepped beams: exact and
numerical solutions.

» They sought lowest natural frequency of a
stepped beam with two different cross-sections
for various boundary conditions.
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FREE VIBRATION OF STEPPED
BEAMS: EXACT SOLUTIONS

The governing differential equation for the small
amplitude, free, lateral vibration of a Bernoulli-
Euler beam is:

(6°/8x*)(EI(x) 9°y/8x?) = —pA(x) 3*y/ar>,

Assuming normal modes, one obtains the
following expression for the mode shape:

(d°/dx)(EI(x)d*X/dx*) = w’pA(x)X.

School of Mechanical Engineering
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FREE VIBRATION OF STEPPED
BEAMS: EXACT SOLUTIONS

For the shown stepped beam, one can rewrite the

governing equation as: | :

d*X;/dx?= KX, =] .

Az, Ia

Ki=(pA/ElL)w and i =1, 2. - T N

X,=C,sin K,x,+(C;cos K,x,+C,sinh K,x,+ C, cosh K,x,, D=x,=L,,

Xo=0Cismn Kox,+ Oy cos K, x,+ ), sinh K,x,+ Cy cosh K,x,, O0=x,=L,.

School of Mechanical Engineering
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Boundary Conditions:

(1) pinned-pinned,
X,=5LdX,/dx=0 atx,=0, X.=Ld%,/dx3=0 atx,=0;

(2) clamped-clamped,
I1=dx1,-’dxt={lﬂ[x|=ﬂq J'E'::d.:"i-r_ﬂ.-'rd.l‘;:ﬂ ﬁt-t':zﬂ;

(3) clamped-free,
X, =dX,/dx,=0at x, =0, Ld* X fdxs=(d/dxs) [, d* X./dx3) =0  at x. =0

(4) clamped-pinned,

X,=dX,/dx,=0at x,=0, Xo=1.d°X,/dxi=0 atx.=0.

School of Mechanical Engineering
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Compatibility Requirements at the
Interface

Stress concentration at the junction of the two
parts of the beam Is neglected.

At the junction, the continuity of deflection, slope,
moment and shear force has to be preserved:

dXx dx d’X d* X,
X,(L)=X(L,), E——}‘(Ll)*—d 2(Ly), I dx‘(L,)-—I—-a-—-(L ),
__51_( d Xl) d ( d Xz)
dx. dx? (L= dx Izd 2 ) (L),
o

School of Mechanical Engineering
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The clamped-clamped beam problem:
Introducing the BCs

I1=dx1,-’dxt={lﬂ[x|=ﬂq J'E'::d.:"i-r_ﬂ.-'rd.l‘;:ﬂ ﬁt-t':zﬂ;

X1 — C| Sin KM;.'I" C;!- COs H|I| +E—; sinh K111+ C.q_ cosh K|I|_.,, 0= X, E--L-h.

Xo=Csin K x,+ C,cos K, x,+ (', sinh K,x,+ Cy cosh K,x,, O=2x,=L,.

Yields: C,=-C,, C,=-C,, C,=-C. . Cq=-C;

School of Mechanical Engineering
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The clamped-clamped beam problem:
Compatibility Requirements

Let:

S1=sin K,L,, S2=sin K,L., Cl=cos K,L,. C2=rcos K.L-,
SH1=sinh K,L,, SH2=sinh K.,L-, CH1=cosh K,L,, CH2=cosh K-L-,
K=K, K,, I=1/1.

Then the compatiblility requirements yield:

f S1-SH1 C1-CHI ~S24+SH2 C2+CH2 1 (¢, (o
C1-CH1 -S1-SHI  K(C2-CH2)  -K(S2+SH2)| |G| _Jo
~S1-SH1 -C1-CH1 K?[($24SH2) K’I1(Cc2+cH2)| |, [ ol
[-C1-CH1 S1-SH1 -K’I{C2+CH2) K'I(S2-SH2)J (C.) [0

School of Mechanical Engineering
Iran University of Science and Technology




Characteristic Equations for Other
BCs

\
i! 2 ti

(1) pinned-pinned

(2} clamped-free,

I §1-8H1
| €1 -CH1
~8§1-SHI
—C1—-CHI

School of Mechanical Engineering
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3]
Cl1
=351

-1

SHI
CHI1
SHI
CHI1

C1-CHI1
—81-58H1

~(C1-CHI1

51 —5H1

—52 —aH2

K C2 K CH2
K'Is2? =K*ISH2
-K’'ICc2 K°'ICH?

~-S2—SH2
K{C2+CH?2)
K-1{82-SH2)
~K*'IC2-CH2)

—(C2—-CH?2
K({-S2+SH?2)
KIC2-CH2)

K'I(82+CH2) ]




Characteristic Equations for Other
BCs

(3) clamped-pinned,

§1-SH1  C1-CH1 ~-82 ~SH2
C1-CH1 -81-SH1 K C2 K CH2
-81-SH1 —-C1-CH1 K®IS2 -K'ISH2
-C1-CH1 S1-SH1 -K°'IC2 K'ICH2

(4) free-free

| S1+SH1  C1+CHI -§2 -8H2 -C2-CH2
. C1+CH1  —S1+SHI K({C2+CH2) K(-S2+SH2)
~S1+SH1 -C1+CH1 K?I{82-SH2) K’I{C2-CH2)
—C1+CH1 S1+SH1 —-K'I{C2-CH2) K*I(82+5H2)
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Characteristic Equations for Other

BCs

(5) sliding-sliding,

Cl
| —S1
-1
| 81

(6) sliding-pinned,

CH1
SH1
CH1
SHI

-2

-K 82
K?I1C2
K*182

-C2
~-K §2
K’IC2
K182

-CH?2

K SH2
~-K?I CH2|
K*I SH2

Cl1
—-51
—Cl1
51

School of Mechanical Engineering
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CHI1
SHI
CHI1
SHI

~-82

K C2
K*“IS2
-K'I1C2

-SH2
K CH2
—K*1 SH2
K*I CH2




Characteristic Equations for Other
BCs

(7) clamped-sliding,

51 --SHi C1-CHI1 C2 CH2
C1-CH1 -S1-SH1 -KS&§? KSH2 |
—S1-SH1 -C1-CH1 K?°IC? -K°‘ICH2

| -C1-CH1 S1—-SH1 K°'IS2 K°ISH2

(8) free-sliding,
51+ SHI C1+CH1 -2 —(CH2
Ci+CH1I -51+5HI —-K §2 K S5H2

| -S14+SH1 -Cl1+CHI K C2 —-KiCH2|
| —-C1+CH1 S1+5H1 K'I52 K*ISH?

School of Mechanical Engineering
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Characteristic Equations for Other
BCs

(9) free-pinned,

\
i! 2 ;E

51+ SHI1
C1+CHI1
-51+5HI1
-C1+CHI

School of Mechanical Engineering
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C1+CHI1
-51+5H1
-C14+CHI

S1+58H1

—-52 -5H2
K C2 K CH2
K*Is2 —K°ISH2

-K*ICc? K'ICH2 |




Exact Solutions:

As an example, consider a stepped beam with circular cross-section, with L, = L,= L/2

5

~=aA,, I =1/I and K = K./ K,, where | = 2", The results for various values of I are

Exact solutions for w=(w/L W EL,/pA)""" of fundamental mode for various boundary

ceonditions
| F-F o T “—P -5 F-5 F-P
1 22-3733 0-BA06 2-4674 53933 5-50113 15:-4182
5 241650 13-5124 24372 S 6912 9-3624 18-6102
10 233459 1590606 23292 50321 1105319 18-7641
20 22.47258 18-2949 21841 53573 124070 18-4031
40 211907 20-1954 20122 4-8913 13-2047 17-7778

F-F, free-free; 5-5, shiding-shiding; 5-P, shding-pinned; -5, clamped-shding; F-5, free-shding; F-P,

free-pinned,
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HIGHER MODE FREQUENCIES AND
EFFECTS OF STEPS ON FREQUENCY

By extending the computations, higher mode
frequencies were found (Journal of Sound and
Vibration ,1989, 132(1), 164-168):.

Numerical results for @ = (w/L*)( EI,/pA,)"* of the first six modes for various boundary
conditions with I,/ I, =5

Boundary Mode
conditionst I 11 11 v v VI
F-F 24-1650 78-0079 142-546 245-623 3159-050 504-621
F-S 9-1624 35-0666 91-571 167-684 267-914 3199-539
C-F 2-4373 22-3335 78-559 142-572 245-589 359-051
F-P 18-6102 63-0624 121-619 221-954 322-361 473-370
P-P 10-4129 50-6566 103-711 195-127 295-500 431-289
C-P 16-2811 63-5852 121-756 221-914 322-358 473-373
C-C 259591 T8-1518 142-088 245-592 359097 504-626
C-5 5-6912 34-9710 92-003 167-661 267-891 399-542
S-P 2:4372 26-8677 75-853 143-402 247-328 353-923
5-§ 13-5124 45-0027 111-345 187-132 301-794 428902
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Elastically Restrained Stepped Beams

FREE VIBRATION OF STEPPED BEAMS ELASTICALLY RESTRAINED AGAINST
TRANSLATION AND ROTATION AT ONE END

M. J. Maurizi anp P. M. BELLES

Department of Engineering, Universidad Nacional del Sur, Avda, Alem 1253, 8000 Bahia Blanca,
Argentina

Journal of Sound and Vibration (1993) 163(1), 188-191

kpy
X1 X3 --——q
r Az > |
A]'r !1 l 1
k; | |
’ :
! f
i L Ly
— : >t .
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Boundary Conditions and Compatibility
Requirements at the Interface :

xl=01
k,dY,/dx,=EIl, d*Y,/dx},  EI, &*Y,/dxi=-kY;
at x,=0, |
EL d%Y,/dx3=0, ELd’Y,/dx3=0.
dY; dYy,
Y1i(L:) = Ya(Ly), ——(L)=—— (Lz),
d.?('] d)Cz
d*y, d*vy, d ( sz.) d ( szg)
I LY=1I L), —I|1I L)y=——I1I L)).
ldx;]!(l) zdx%(z) ax. ldxf(l) % de,%(Z)
u
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The Characteristic Equation

1 R(K,\L)) 1 —R(K\L)) 0 0
~T(K,L)? 1 (KLY 1 0 0
51 Cl SHI1 CH1 —(S2+ SH2) -(C2+CHY) |_,
Cl —-51 CHI1 SH1 K(C2+ CH2) K(—S2+SH2) '
-S1 ~Cl1 SH1 CHI —KH{-S2+SH2) —-K*I(-C2+ CH2)
-Cl 51 CHI SH1 K’I(—C2+ CH?) K 1(82+ SH2)
Here

S1=sin K,L,, S2=sin K,1L,, Cl=cos KL, C2=cos K>1L5,
SH1 =sinh KL, . SH2=sinh KL, , CH1 =cosh K|L1 ) CH2 =cosh Kng,

K=K,/K,, I=L/I,, R=ENL/k.L,, T=EL/kL}.
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Exact Solutions:

Fundamental frequencies &, = (/LY ElL /pA)"* of a stepped beam (Az=a A\, I=L/I,=
a’, K=K,/K,, Ly=L,=L/2) with rotational and translational springs at one end

I=01 I=02 =05 [I=1 I=5 I=H

—
R, T ¢ 0 0 0 0 0

R=T=500 -12125 0-11127 0-09682 0-08564 0-06164 0-05280

R=T=30 0-38278 0-35122 0-30553 0-27019 0-19440 0-16649 }—
R=T=3 1-19003 1-09018 0-94611 0-8352C 0-59891 0-51243 %&

R=T=05 3-19308 2-90795 2-49360 Z-18019 1-33526 1-30649 '
R=T=005 4-73087 4-38722 3-76972 3-27873 2-27567 1-92740 i

R=T=0-005 4-97010 4-64721 4-01059 3-49034 2-41974 2-04815 )

R=T=0 4-99750 4-67785 4-03959 3-51605 2-43734 2:06292 g:
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Extension of the Research Work:

FREE VIBRATIONS OF STEPPED BEAMS WITH ELASTIC ENDS

M. A. DE Rosa
Journal of Sound and Vibration (1994) 173(4), 563-567
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Extension of the Research Work:

FREE VIBRATIONS OF STEPPED BEAMS WITH INTERMEDIATE ELASTIC
SUPPORTS

M. A. DE Rosa
Jowrnal of Sound and Vibration (1995) 181(3), 905-910

k
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Extension of the Research Work:

Vibratory characteristics of multi-step beams
with an arbitrary number of cracks and
concentrated masses

Q.S.Li *
Apphed Acoustics 62 (2001) 69 1-706
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Extension of the Research Work:

On the eigencharacteristics of multi-step beams carrying a tip
mass subjected to non-homogeneous external viscous damping

M. Giirgdze*, H. Erol
Journal of Sound and Vibraton 272 (2004) 11131124

L
L, L, I, I
< - . “«——— > - ———»

_________ e S

— 1 -
wl:x:t:lT _______ B [ — — ] (-_)I

-—0 /1 My, Eula, €
my, Eily, 1 my, Bili, o

School of Mechanical Engineering
Iran University of Science and Technology




Advanced Vibrations

Distributed-Parameter Systems:

Exact Solutions
(Lecture 16)

By: H. Ahmadian

ahmadian@iust.ac.ir



INTRODUCTION

The problem of lateral vibrations of beams under
axial loading is of considerable practical interest,

» Tall buildings
» Aerospace structures
»Rotating machinery shafts

Because of its important practical applications, the
problem of uniform single-span beams under a
constant axial load has been the subject of
considerable study.
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BEAM FLEXURE: INCLUDING
AXIAL-FORCE EFFECTS

Axial forces acting in a flexural element may have
a very significant influence on the vibration
behavior of the member,

»resulting generally in modifications of
frequencies and mode shapes.

The equation of motion, including the effect of a
time-invariant uniform axial force throughout its
length, Is: G2 0 4 Bl

&% vix,t)

T . - =1
5 + 1 TS

vl 1]
Ere—2n N

(s i
-
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BEAM FLEXURE: INCLUDING
AXIAL-FORCE EFFECTS

NV (x,t) (2 2) z) 92u(x, t) p{r )
gr Wbt T IE) T I i I -
—— foun )
Vi ) — —N(x) dulr,t)  OM(x,1) N(0) "__.5_— —————————————————— == —= N(L)
(1) = —Niz) A T i | . h! glx)
(a)
M{x,t)+ Vi(xz,t) de + N(x) é‘zé.l ) dr — [M[.l t)+ E‘Mél.r ) cE.r] =10 M)
' ! plx, ) dx ﬂ""_":_-‘? r) + 'J_'_i'_’ dx
- .
2 [ 9% .r.i"}} & [ Ut*[.r.i‘)] Mix.t)  Vix, 1) __--[-""'__ V+dN l
— |ET(x) : — — |N(x) 1. . i N(x)+ J
OHr2 . Hx2 Or S 2N {T}Ir:i"": ,_{T r}
I I JI . |: (x) | 4—[
4 { ‘] iiil.{‘r‘f]l - { . f} I\\u- [l = | L'll{'{' f‘}l+ U{:T r}
) —ge P ‘ filx, f)dx
vlx, 1) X dx !
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BEAM FLEXURE: INCLUDING
AXIAL-FORCE EFFECTS

Separating variables:

I'_:i?{v[i.l'} N ;i:-”[;l‘zl B I T[I:F[tzl y
o) " EI éz)  EIY@M “°

V() +2Y(t) =0

() + g o (x) —atdlz)=0 ¢*=

(s* + gr2 a2 a®) Gexplsz) =0

School of Mechanical Engineering
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BEAM FLEXURE: INCLUDING
AXIAL-FORCE EFFECTS

(5% + grE a2 — a’) Gexplsr) =0

510 = L 1d 834 =— T €
B f.r . giy1/2 52 B f ] giy1/2 g2
ﬁzv(lﬂ-—'—.—i) +? E:]lll,l(fL—I—T) Y

dlr) =1 cosdr + Do sindr + g cosh er 4+ L)y sinh er
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Example: A simply supported uniform
beam

___—-___-__ = : T._______'F-—___
G f::-'_ > -_ _ 1_;1'1-’ ) _ - - - -__ i _-::__:":l'__. N(L)

dlr) =1 cosdr 4+ [a sindxr + Dy coshexr + [y sinh ex
Dlz(), DSZO’ D4:O_ @lxr) = Dy sinéx

s
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BEAM FLEXURE: INCLUDING
AXIAL-FORCE EFFECTS

Retaining the constant axial force N, the
governing equation can be used to find the static
buckling loads and corresponding shapes:

w =0 ca=0,8 =g ¢=0,

dlr) = I cosgr + Do singr + Da o + Ly

School of Mechanical Engineering
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GALEF Formula

» E. GALEF 1968 Journal of the Acoustical
Society of America 44, (8), 643. Bending
frequencies of compressed beams:
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GALEF Formula

A. BOKAIAN, “NATURAL FREQUENCIES OF
BEAMS UNDERCOMPRESSIVE AXIAL
LOADS”, Journal of Sound and Vibration
(1988) 126(1), 49-65

» Studied the influence of a constant
compressive load on natural frequencies and
mode shapes of a uniform beam with a variety
of end conditions.

» Galef’s formula, previously assumed to be valid
for beams with all types of end conditions, Is
observed to be valid only for a few.

@-
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GALEF Formula
BOKAIAN showed:

» The variation of the normalized natural
frequency 2 with the normalized axial force U
for pinned-pinned, pinned-sliding and S|Idln(]-
sliding beams Is observed to be_() J1—

———— ——y —— 1 r— 1 T e ———
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]

Variation of 2 with U for a pinned-pinned or a pinned-sliding or a sliding-sliding beam.
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GALEF Formula
BOKAIAN showed:

» Galef's formula, previously
assumed to be valid for
beams with all types of end
conditions, Is observed to
be valid only for a few.

» The effect of end
constraints on natural
frequency of a beam is
significant only in the first
few modes.

4] L 1 1 | 1 1 1 "
v} Ol o2 03 04 035 _oe o7 08 09 3*]
U

Variation of £ with U for the first, second, third and the tenth mode. ¥, Sliding-free; x,
pinned-free; @, clamped-pinned; O, clamped-clamped; [, clamped-free; A, clamped-sliding; +, free-free;
——, pinned-pinned or sliding-pinned or sliding-sliding.
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»

PREDICTION OF BUCKLING LOAD FROM
VIBRATION MEASUREMENTS

P. Mandal

Manchester Cenire for Civil & Construction Engineering, UMIST,
PO Box 88, Manchester, M60 10D, UK
P.Mandal @umist. ac.uk

Abstract

Key words:

The linear relationship between buckling load and the square of the frequency
of a structure is limited to the cases in which the fundamental vibration mode
and the lowest buckling mode are the same. For cases where the two modes
are different researchers in the past have suggested some empirical equations.
In this study (mainly numerical) it is shown that the hnear relationship is
reasonably valid when the modes are approximately close o each other.
However, for a simply supported rectangular plate of aspect ratio two or more,
the fundamental vibration mode and the lowest buckling mode are usually
different to each other. It is observed that the apparent non-linear curve in this
situation consists of a few linear segments depending on the aspect ratio. The
buckling load could be accurately predicted by measuring the first few
frequencies, instead of just one.

Buckling load, Frequency, Rectangular plates.
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NATURAL FREQUENCIES OF BEAMS UNDER TENSILE
AXIAL LOADS

A. Bokalant
Journal of Sound and Vibration (1990) 142(3), 481-498

» For pinned-pinned, pinned-sliding and sliding-sliding
beams. this variation may exactly be expressed as
N=v1+U

» This formula may be used for beams with other types

of end constraints when the beam vibrates in a third
mode or higher.

» For beam with other types of boundary conditions, this
approximation may be expressed as? =v1+yU (y < 1)
where the coefficient y depends only on the type of the
end constraints.

School of Mechanical Engineering
Iran University of Science and Technology



NATURAL FREQUENCIES OF BEAMS UNDER TENSILE

AXIAL LOADS

A. Bokalant
Journal of Sound and Vibration (1990) 142(3), 481-498
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Variation of 2 with U for a sliding-free beam.
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FREE VIBRATION CHARACTERISTICS OF VARIABLE MASS ROCKETS
HAVING LARGE AXIAL THRUST/ ACCELERATION

A. JOsHI
Jovrnal of Sound and Vibration (1995) 187(4), 727-736

The study Is an investigation of the combined effects of

» compressive inertia forces due to a conservative
model of steady thrust and

» uniform mass depletion on the transverse vibration
characteristics of a single stage variable mass rocket.

» the effect of the aerodynamic drag in comparison to
the thrust is considered to be negligible and

» the rocket Is structurally modeled as a non-uniform
slender beam representative of practical rocket
configurations.

“
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FREE VIBRATION CHARACTERISTICS OF VARIABLE MASS ROCKETS
HAVING LARGE AXIAL THRUST/ ACCELERATION

AL JosHI

Jovrnal of Sound and Vibration (1995) 187(4), 727-736

In the stuady the typical 10
single stage rocket
structure iIs divided into a
number of segments.

»Within which the 0
bending rigidity, axial
compressive force and
the mass distributions
can be approximated
as constants. 0

o
=

EIx 108 (N m?)
NS
o

10

12

pA x 107 (kg/m)
oo

20 25 30 35 40
x (m)
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FREE VIBRATION CHARACTERISTICS OF VARIABLE MASS ROCKETS
HAVING LARGE AXIAL THRUST/ ACCELERATION

AL JOsHI
Jovwrnal of Sound and Vibration (1995) 187(d4), 727-736

The non-dimensional equation of motion for the
constant beam segment :

(O*w,; /0X7) —a,(0°w;[0X7) + Aiw,= 0.
a; {=Px)Li(ED:;j )il =(pA)*LiJ(ED) "™

w;=A; cosh 4, X;+ B; sinh 4, X;+ C: cos /4 X;+ D, sin A X;,

i=a;+42)"*—a;}/2, =a;+42)"+a}/2.
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FREE VIBRATION CHARACTERISTICS OF VARIABLE MASS ROCKETS
HAVING LARGE AXIAL THRUST/ ACCELERATION

AL JOsHI
Jovwrnal of Sound and Vibration (1995) 187(d4), 727-736

The free-free boundary conditions are:
wy (0) —a,w (0)=0, Wi (0) —a,w( (0)=0,

wa(l)—awy(l;)=0, wy () —awn(l)=0,

and the continuity conditions are

Wi “_r) — “_'.r"t([}}ﬁ “'; U i) = ”'_r'; (0),
w/' (L) —aw ([ )=w/(0)—aw;(0).
“,;H ll('{_l ) T {,,fl,-].i‘; U_s} — “_'.r:w ll([]\!l o 'f"“_r']'L_'.ff [0)*
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FREE VIBRATION CHARACTERISTICS OF VARIABLE MASS ROCKETS
HAVING LARGE AXIAL THRUST/ ACCELERATION

AL JOsHI
Jovwrnal of Sound and Vibration (1995) 187(d4), 727-736

12

oL m :12 _—7 Third mode
The variation of frequency = w57 s
parameter and cyclic L —
frequency versus the mass | / -
depletion parameter M, for  *
the first three modes of
vibration of a typical rocket £, ", —
executing a constant I B
acceleration trajectory. o 0T 0z 05 ox 05 06 07

My
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Investigation of thrust effect on the vibrational characteristics
of flexible guided missiles

S.H. Pourtakdoust®, N. Assadian

Journal of Sound and Vibration 272 (2004) 287-299
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{a) Distribution ol bending stillness at final time of flight;
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Investigation of thrust effect on the vibrational characteristics
of flexible guided missiles

S.H. Pourtakdoust®, N. Assadian

Journal of Sound and Vibration 272 (2004) 287-299
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Advanced Vibrations

Distributed-Parameter Systems:

Exact Solutions
(Lecture 17)

By: H. Ahmadian

ahmadian@iust.ac.ir



SYSTEMS WITH EXTERNAL FORCES
AT BOUNDARIES

- x—»l——h-» u(x,t)
S ' u(0,1) =0,
N — F(t)
m(x), EA(x) |
. N EA LD p
' b x=L :
Qu(x,t 2u(x,t |
O a2 D | e g
dx | 812

The 2"d of boundary conditions is nonhomogeneous,

»precludes the use of modal analysis for the
response.
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SYSTEMS WITH EXTERNAL FORCES
AT BOUNDARIES

We can reformulate the problem by rewriting the
differential equation in the form:

3 Au(x,1t ’u(x,t

2 [EA(x) YOO F s — L) = mo) D o
0x dx 01>

ala e pounaary conaiuorns ds.

1(0,1) =0, [EA( y Julx, t)} =0

0x. 7
Now the solution can be obtained routinely by

modal analysis.
Any shortcomings?
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SYSTEMS WITH EXTERNAL FORCES
AT BOUNDARIES: Example

Obtain the response of a uniform rod, fixed at x=0 and
subjected to a boundary force at x=L in the form:

F(t) = Foee(t)
cﬁlﬂx) 5 B 2__u9m_
d}:z ‘|_,6 U(I)—-—0,0(XﬁL,,B —Ez
Um) AU :0
dx _

2r —1 EA 2 2r—1
oy = )’”1/ . U, x)ﬂ/—-—sm(” )'” =12,



SYSTEMS WITH EXTERNAL FORCES
AT BOUNDARIES: Example

UL (! | FoU, (L
(1) = r )[ Fore(t — T)simw, 7d7T = o rz( )(l—coswrt)
(«U’r 0 wr
| . Cr—1)r
4Foy/2/mLsin ———— 12 e (2r—1)ﬁ\/ﬂt
= — COS
(2r — 1)272 EA 2 mL?
AR mL(—1Y "l m? (2r—V)m [ EA
= 3 1 —cos 5t cr=1,2,...
Q2r —1)2x EA 2 ml
SFoL < (=1 (2r—Dnx Qr—)r [EA
1) = 1 i— !
ulx, 1) WZEA;QF—I)Z Y TS TV 2
o
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2F,x ’
EA

Id

Ol7,_» /3L—x /SL-x /7L——x /9L—x /11me
C C C C o c
L+x 3L+x S5L+x TL+x O9L+x
c C C c C

Axial displacement at x = 3L /4 due to a force in
in the form of a step function at x = L
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Identification of dynamic properties of boring bar vibrations in
a continuous boring operation

L. Andrén*, L. Hakansson. A. Brandt, 1. Claesson
Mechanical Systems and Signal Processing 18 (2004) B69-901

y Cutting
Cutting depth
speed direction

/4 H_.l f{x-t} 15 mm E

1

/ Bonng bar o —

gy ’ ",

? N s "“; 15 mm

— Displacement u(x t) ~ AA .
Z K| s
Workpiece The cutting tool
Eﬁu{r r} e ci’zu{.ﬁ:, f)
u(x, )] _g= 0 culx, f) —0.  EI }qu{t no_ 0. EI(x }c”zu{t f}) _o.

& S ot i ox? i
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Flank Wear and Process

Characteristic Effect on System
ming-chyuan Lu I Dynamics in Turning

Graduate Studeant ) ) - ,
Journal of Manufacturing Science and Engineering

Elijah Kannatey-Asibu, Jr. FEBRUARY 2004, Vol. 126
Professor

) F(r
Cantilever beam modfl for turnlnq in the feed direction
< >

F_ Cutting force

NN\

N\

Cantilever beam model for turningﬁ
in the cutting direction
() F.0)

F
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System Dynamics in the Feed
Direction

9z (x. 1) 9z (x.1)
El— - pA ——=0 (0<x<L)
ox dt
dz(x.t) d*z(x.1)
:(I_,f)‘x:g: . - :0 ' :0
dx x=0 dl*z x=L
Pz(x,1)
El— 35— =FO+F)
) x=L

F(t) = k. |z(L,t)—z(L,t—71)+h,_]

Fi(1) = Kzi(1) + Ciz (1)
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System Dynamics in the Cutting Direction

Elé‘d‘ (x,1) ) 9?y(x,t) 0
ot P T T
Iy(x,t) d*y(x.t)
y(0,1)=0 - = 0. —~ — 0
dx 0 dx o
d’y(x,t)
e =F (1) +F1).
dx- 7

F(t)=k,[z(L.t)—z(L,t—7)+h_]
Ff(ﬂ‘)z Mgl F(1)+F(1)]
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Modelling machine tool dynamics using a
distributed parameter tool-holder joint interface

Keivan Ahmadi, Hamid Ahmadian™
International Journal of Machine Tools & Manufacture 47 (2007) 19161928

o*U, (x, 1) O* U (x, 1)
-+ 1y
Ox4 Or?

0<x<Ly,

EII — K(X)[U(X, I) _ Ul (X, I)],

LY

GGGGGGG

K(x) = k(x)(1 + 1),

N

O'Us(x, 1) | Us(x, 1)

i
El» > + m»s ¥

= [ - T
A 4 o
School of Mechanical Engineering
Iran University of Science and Technology
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Modeling Tool as Stepped Beam on
Elastic Support: Boundary Conditions

3
@2U1(0, f) — 0 _ EI, 0 Uz(L’ {) _ 11

A2 2 0x? -
O°U1(0, 1) O"Us(L.1) _
o3 0. 0x? |

?



Modeling Tool as Stepped Beam on Elastic
Support: The compatibility requirements

Ui(Ly, 1) — Ux(Ly, 1) =0,
QU (Ly,1) 0Ux(Ly,1)

— ().
OX OX |
Q*U (L4, ) 0°Us(Ly, 1)

El ——5+—>— E,——=5"= = 0.
U (L1 1 P U~(Li. t
EIlc 1 (L1, 1) E[zc 2 (L1, _):0‘
x> 0>
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Modeling Tool as Stepped Beam on
Elastic Support

Ui(x, 1) = &(x)e,
Us(x,1) = P(x)e,

N

P
K(Y) — Z Kﬁxﬁ —> @(Y) — Z an—x”_l
p=0

n=1

IP(‘(’) — Cle”“” -+ Cgﬁ‘-_mx -+ C3€‘-Ax -+ C4€‘-_Ax_
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Modeling Tool as Stepped Beam on
Elastic Support

C |
0
7 C4
[Z(w)] a (7 ,,
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Advanced Vibrations

VIBRATION OF PLATES

Lecture 17-1

By: H. Ahmadian

ahmadian@iust.ac.ir
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VIBRATION OF PLATES

»Plates have bending stiffness in a manner
similar to beams in bending.

»In the case of plates one can think of two
planes of bending, producing in general two
distinct curvatures.

» The small deflection theory of thin plates, called
classical plate theory or Kirchhoff theory, 1s
based on assumptions similar to those used In
thin beam or Euler-Bernoulli beam theory.

School of Mechanical Engineering
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EQUATION OF MOTION: CLASSICAL
PLATE THEORY

The elementary theory of plates is based on the following assumptions:

» The thickness of the plate (h) is small compared to its lateral
dimensions.

» The middle plane of the plate does not undergo in-plane
deformation. Thus, the midplane remains as the neutral plane after
deformation or bending.

» The displacement components of the midsurface of the plate are
small compared to the thickness of the plate.

» The influence of transverse shear deformation is neglected. This
Implies that plane sections normal to the midsurface before
deformation remain normal to the rnidsurface even after deformation
or bending.

» The transverse normal strain under transverse loading can be
neglected. The transverse normal stress is small and hence can be
neglected compared to the other components of stress.
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Moment - Shear Force Resultants:

Pw 0w
= (a—+‘ay—)
2w 8w _ EW
My=-D ("a"j?i' T ""é‘;i') T 12(1 - 1?)
32w
xy — x=—({1-v)D
My = M, (1=v) dx dy
0. = M My B ?w 9w
T x dy 9x \ 9x2  dy?
oM, M, d (*w 3w
0, =7+ 5 =Py GEt e
0y 0x dy \ dx dy
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Equation of motion

/ ] ~Myy + 5 dx

: 7 le""d—a%Ydy MY+%%!dY . p Myx"'d;ﬂ e dy

00; | 30, 52w

| + JC, ,t — h'_

™ % fx,y.t)=p o3

*w 3*w 3%w 3% w

D -2 | + oh— = f(x,y.,f
(Bx“ 0x% dy* 8y4) SFY?. Gy
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BOUNDARY CONDITIONS

03
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y L/
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Fixed edge
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Y wlay=0 qw =0
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BOUI})IDARY CONDITIONS

> X
Simply supported
" edge N
b w(a, y t)=0
i, azw) Pw _
— —_— —_— =0 or =
,=-o{ZF 3 | @) o | @y

yY

O$H _____ .

< ¢
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BOUNDARY CONDITIONS: Free Edge

» There are three boundary conditions, whereas
the equation of motion requires only two:

MI‘x:a =0 OQxly=q =0 Mxy‘x:a =0

» Kirchhoff showed that the conditions on the
shear force and the twisting moment are not
Independent and can be combined into only
one boundary condition.
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BOUNDARY CONDITIONS: Free Edge

Replacing the twisting moment by an equivalent
vertical force.
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BOUNDARY CONDITIONS

0 a -
L Free edge — \ /
Fw
b A sz_D(axz+vay )(ayt)
oM Bw Pw
: V —x =
Yy Oct dy [8x3 teV ox dy? ] (a,3,9)
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BOUNDARY CONDITIONS

0 a - x
Edge supported on a M, = D( w Iy az,w) =
— linear elastic ax2 2 )| (@y.0)
sping v, D[a?’ oy O ]
— . + —
b PR e | R
=~ kyw(a,y,b)
Op—- % X
vy
ky ky

zY
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BOUNDARY CONDITIONS

0 a_

X
Edge supported on a
torsional
< elastic spring T
b

V=D (9w aZw) V)

Mi==D\32 " 52 N@yn™ 2 axl(ayp)
Y + 83 .l ]

Vp=-D 8x3 * axaﬁ (ayt)
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FREE VIBRATION OF RECTANGULAR
PLATES

*w 9% w 0*tw 92w
D|{— 42
dx4 dx29y%  oy*

wx,y,t) = W(x, y)T(r)

d*T (1)
dt?

VAW (x, y) = AW (x,y) =0 4= PhO
D

+@’T(t) =0 T() = Acoswt + Bsinwt
2




FREE VIBRATION OF RECTANGULAR
PLATES

(V= AW, y) = (V2 + A3V = W)W (x,y) =

*W, 3*W,

(V225 Wi(xy) = —— + e FA2Wy(x,y) =
0°W, 3*W
(V2 =AY Wy(x,y) = axj | ay; AEWa(x,y) =



FREE VIBRATION OF RECTANGULAR
PLATES

W(x,y) = A sinax sin 8y + Ap sinax cos By
+ A3 cosax sin By + A4 cosax cos By
+ As sinh @x sinh ¢y + Ag sinh 8x cosh ¢y
+ A7 cosh8x sinh ¢y + Ag cosh8x cosh ¢y

}.22(12—!-52:92-‘-(;‘)2



Solution for a Simply Supported Plate

d*w AW
W@, y) = E;E'(Oa y)=W(a,y) = = (a,y)=0
d*w d*W

W(x,0) = —d}?(x,O) = W(x,b) = —d-y-z—(x, b) =0
We find that all the constants A;except A, and

sinowa = 0 > Upd = MTT, m=1,2,...
sin Bb = 0 » Bub =nm, n=12,...
' D\ m\2  (n\2] ( D\
a2 il R o i il
o = A (ph) " [(a) +(b)](ph) |
mmTx . Ay

sin —-—, mn=12,...

Win(x,y) = Aimn Sin ,
.
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Solution for a Simply Supported Plate

. MAX . RAY
Whn(X,y,t) = Sin Sifl —g—-—(Amn COS Wint -+ By SIN Wy tt)

MTX . R
w(x,y,t) = Z Z sin sin ——-—}—’(Amn COS Wpnt + By SIN Wy t)

m=1 n=]

The Initial conditions of the plate are:
w(x,y,0) = wolx,y)

d
"’(x y,0) = t(x,y)
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Solution for a Simply Supported Plate

2 - mrx . nu
> ) Amnsin == sin —=> = wo(x.)
a

w(x,y,O) = T.UO(JC,y)

' m=]1 n=1
dw
8_(x y,0) = wo(x,y) e I e
t . MITX . RnwYy
E E B,y SIN sin 5 = = wo(x,y)
m=]1 n=1 4

[ f wol(x,y) sin ddeddic sin m;y dxdy

mix

i1
Bn = [ f wp(x,y) sin sinm—}—;—dx dy
abwmn b

ShIth Ingme ing
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Solution for a Simply Supported Plate

2
=

> X

|
|
I
Lol
[
m=2n=1 :
Nodal Nodal
) line
line

School of Mechanical Engineering
Iran University of Science and Technology



Solution for a Simply Supported Plate
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Advanced Vibrations

VIBRATION OF PLATES

Lecture 17-2

By: H. Ahmadian

ahmadian@iust.ac.ir
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Vibrations of Rectangular Plates

2

VAW (x, y) — A4 W(x,y) =0 A= p’g"
Wix,y) = X(x)Y(y)

XY +2X"Y" + XY —AXY =0

The functions X(x)and Y(y)can be separated provided
either of the followings are satisfied:

—> Y'(y) = —B°Y (1), Y (y) = —B°Y"(y)
§>Xa"f(x) — —Q'ZX(I), X””(x) _azxn(x)

School of Mechanical E g ing
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Vibrations of Rectangular Plates

Y”(y) — -—ﬁZY(y), me(y) _ _ﬁZYﬂ(y)
Xff(x) — —Q'ZX(I), X””(x) — _azxn(x)

These equations can be satisfied only by the
trigonometric functions:

SIM Oty X or sin B,y
COS Uy X COS B,y
mim nim

Oy = m=1,2,...,8, = n=172 ...
| a | b
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Vibrations of Rectangular Plates

Assume that the plate is simply supported
along edges x =0 and x =a:

Xn(x) = Asinay,x, m=1,2,...
Xn(0) = Xn(a) = X,,(0) = X,,(a) =0
Implying:

w(0,y,) = w(a,y,t) = Vw(0,y,t) = V’w(a,y,t) =0

Y"'(y) —2e2Y"(y) — A —a )Y (y) =0



Vibrations of Rectangular Plates

The various boundary conditions can be stated,

SS-55-SS5-SS, SS-C-SS-C, SS-F-SS-F, SS-C-SS-SS, SS-F-SS-SS, SS-F-SS-C
4

Assuming: A* > aj,
Y(y)=e”
st —25%a2 — (AP —at) =0

51,2 = +./A2 -+ O!,%I, §3.4 = ﬂ:i\/)kz — 0[31

Y(y) =Cisindiy + Caco8d;y + C3sinhdy 4+ C4coshdyy

— 2 _ 2 —_ 2 2
51-—\/}. os, 52—\/)L o
gineering
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Vibrations of Rectangular Plates

y=0andy= b are simply supported:

Wx,00=0 Y0)=0
W(x,b)=0 | Y(b) =0
9? 9 2
M, 0) = —D (ﬁg v__g) _y =P d4d°Y(0) _0
ay 9x* /.0 dy?
2 2 )
My(x,b)=-—D(aW v W) =0 Yo
ay? 0x2 (x.b) dy?
Cry+Cy =0
C1 siné1b + Cycos 81 + C3 sinh 85 + Cy coshdrb = 0 Cy4=0

—82C, +82C, =0 —» C2=0
—C18%sin8b — C,87 cos 81b + C362 sinh 835 + C482 cosh 826 = 0 C3=0
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Vibrations of Rectangular Plates

y=0andy= b are simply supported:

sindb =0 31=f%r-, n=12,....
: . RW
Yo(y) =Cismé;y = Ci sin __Z;_?’_
RN S . S S .

N R Ry @] 2 mmra

Win (x,¥) = Cpp siney,x sin By, mn=1, 2,...
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Vibrations of Rectangular Plates

y=0 and y = b are clamped.:

Y0 =0 —

v 0 1 0 1 Cq 0
——(0) 0 51 0 P -0 G| _]0

Y(b) =0 sindib  cosdib sinh§,b  coshéb Cz| 10
¥,  J1cosdib —8;sindib dycoshérb &ysinhédzb | | Cy 0
dy

2818,(cos 81b coshéyb — 1) — a2 sindyb sinh §2b = 0

Y,(y) = Cpl(cosh ;b — cos §1b) (81 sinh §ry — 67 sin b1 y)
— (61 sinh é2b — 85 siné1b) (coshdry — cosdpy)]
Won (X,¥) = Cun Y (y) sinoy,x
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Vibrations of Rectangular Plates

Table 14.1 Frequency Equations and Mode Shapes of Rectangular Plates with Different Boundary Conditions®

Boundary y-mode shape, Y, (y) without a multiplication factor, where
Case conditions Frequency equation Win (x,¥) = Cun X (x) Y, (y), with X, (x) = sina,x
1 SS-§8S-8S-SS sind1b =0 Y,(y) =sinf,y

2 SS-C-8S§-C  26182(cosé1b coshdrb — 1) — a.-ﬁ, sinéib sinhérp =0 Y,(y) = (coshéb — cos 81b) (61 sinhdy — &3 sinéyy)
—(8; sinh 626 — 8, sin81b) (cosh Sy — cosd1y)
3 SS-F-SS-F  sinh&b sind;b {83[A% — a2 (1 —v)I* Yo (y) = -—(cosh 82b — cos 81b) A* — o (1 — v)?]
- —82[A% 4+ o (1 — 1Y) {81 [A* + @ (1 — v)] sinhdyy
—2818[A* — a (1 — v)*1? (cosh &b cosd b — 1) =0  +5; [A\* - a,%,u —v)] sind;y} + {8; [A? + &2 (1 — v)1? sinh &b
—8 [\ — a2 (1 — v)]? sin§;pH{[A? — a2, (1 — v)] cosh &y
+[A2 + % (1 — v)] cos 81y}

4 SS-C-SS5-SS  §r coshé2b sindyb — 4; sinhdrb coséb =0 Y,(y) = sind1b sinhd,y — sinhdb sindyy

5  SS-F-SS-SS  8[A% — e (1 — v))* coshérb sindib Y, (y) = [A2 — @2 (1 — v)] sind;b sinh &,y
~81[A2 + a2 (1 — v)J?sinh &b cos$1b =0 +[A% 402, (1 — v)] sinh &b sind;y

6  SS-F-SS-C 818 A — ot (1 =)+ 81860* + o (1—1)?] Ya(y) = {[A% + &2 (1 — v)] coshdb + [A* — a2 (1 — v)] cos §,b}
-cosh8yb cosd;b + a2 [A4(1 — 2v) — ok (1 — v)?] -(82sind1y — 81 sinh 8,y) + {81[A% + &2 (1 — v)] sinh &b
-sinh 826 siné b =0 +8,[A% — &2, (1 — v)] siné;b} (coshdyy — cos8;y)

Saurce: Refs, [1] and [2].
¢ Edges x = 0 and x = a simply supported.
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Vibrations of Rectangular Plates

Exact characteristic equations for some of classical boundary
conditions of vibrating moderately thick rectangular plates

Shahrokh Hosseini Hashemi and M. Arsanjani ,International Journal of Solids

and Structures Volume 42, Issues 3-4, February 2005, Pages 819-853

Exact solution for linear buckling of rectangular Mindlin plates

Shahrokh Hosseini-Hashemi, Korosh Khorshidi, and Marco Amabili, Journal of

Sound and Vibration Volume 315, Issues 1-2, 5 August 2008, Pages 318-342
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FORCED VIBRATION OF
RECTANGULAR PLATES

w(x Y, t) = Z Z Wmn(x )’)ﬂmn(f)

m=1 n=1 \

the normal modes

a pb
f f ohW?: dxdy =1
0 J0



FORCED VIBRATION OF
RECTANGULAR PLATES

Using a modal analysis procedure:

Hn(2) + @2 Nmn(®) = Ny (1),  m,n=1,2,...

a pb
Nmn(t) =/{; ﬁ Wmn(xay)f(xsyat)dXdy

Nmn(0) .
51
Wmn

Omn{t) = Nmn(0) COS Wyut N Wyt

| ' {
0




FORCED VIBRATION OF
RECTANGULAR PLATES

The response of simply supported rectangular

: . mrx . nm
plates. Win(x,¥) = Aymn SID sin by’ mn=12,...
a
o0 o0 . D 2 2
w(x,y,t) = mglgﬂmn(m sin m;rx sm%)—)cos |:JT2 /;’-1- (—22—2 + g?) t]
1 S & im0 (o) 72 1 _ max . nmy
t L2 oy R .
Aimn = 2//phab

.| 2| D (m2 n?
Z(D)l/zl:mz " sin | 7 -p—h Ez—+b—2)t
Cl)mn = — (_) + (—-) ] o0 0 1/2 f
ph a b 3y (oh) 1 2™ ™ [N @

sin
n2DV2 m?/a? + n?/b? a b Jo

m=1n=1

D (m?> n?
: 2
sin l:n' ;I; (? + Ez—) (t - r)] dr
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Advanced Vibrations

VIBRATION OF PLATES

Lecture 17-2

By: H. Ahmadian

ahmadian@iust.ac.ir
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EQUATION OF MOTION: Variational
Approach

To develop the strain energy one may assume the
state of stress in a thin plate as plane stress:

1
Ty = §(Uxx8xx T OyyEyy T O'xysxy)

2w E Ez 9% w 8211)
Sxx-_—_za? Oxx = 1_v2(8xx+v8yy)z“1_v2(ax2 +v-8—);§~
o 32_w E | Ez %w %w

o Z8y2 ayy=m(8yy+v8xx)=m1—v2 3y2 +v@ |
82w | E 2w Ez d8*w
Exy = —2Z — G&ry = Ery = —2G = —
i dx dyll T T T T 5 )t “ax dy 1+vdxdy
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EQUATION OF MOTION: Variational
Approach

__EZ (azw)2+(i32_w)2+2 ﬁz_’f’_?i.'ﬂJrz(l—v)(azw )2
0= 2(1 —v2) | \ 9x2 9y2 Y ox? dy? dx 3y
n=[/fn0dv
v
D Fw 0w : 32w 92w 92w \*
= _ - 2(1 — — dxd
2[/{(33\:2 T 8y2) ( v)[axZ 3y2 (axay) re)
A

h dw’
Tz%]f (-—8—1:—)) dxdy szjfwdxdy
A A
-
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EQUATION OF MOTION: Variational
Approach

Extended Hamilton's principle can be written as:

21 D 82w 82w 82w 2]
5 _ Viw)? —2(1 — — dxd
le (2/[{( WA ”)[aﬂ 9y (axa-y) } -
A

_%”lf (%_‘f_)zdxdy—lffwdxdy) dt =0
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EQUATION OF MOTION: Variational

Approach

159) D )
L=68] =[] V*w)ldxdydt=D VZwV2swdx dydt
| 2 3]
A A

e

Y3
:D[
t

)
/f V4w6wdxdy+[ [Vzwa( w)
C an
| A

OX

Boundary, C A

School of Mechanical Engineering
Iran University of Science and Technology

— SW

3(Viw)
on

Green’s Theorem

H(al:l B aasz jdXdy: §(F1 dx+F, dy)

|ac

b dt

y



EQUATION OF MOTION: Variational
Approach

School of Mechanical Engineering
Iran University of Science and Technology



EQUATION OF MOTION: Variational
Approach
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Advanced Vibrations

Distributed-Parameter Systems:
Approximate Methods

Lecture 18

By: H. Ahmadian

ahmadian@iust.ac.ir
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Distributed-Parameter Systems:
Approximate Methods

»Rayleigh's Principle

» The Rayleigh-Ritz Method

»An Enhanced Rayleigh-Ritz Method

»The Assumed-Modes Method: System Response
» The Galerkin Method

» The Collocation Method
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RAYLEIGH'S PRINCIPLE

The lowest eigenvalue Is the minimum value that
Rayleigh's quotient can take by letting the trial
function Y(x)vary at will.

A =w; =minR(Y) = R(Y})

The minimum value is achieved when Y(x)
coincides with the lowest eigenfunction Y ,(x).
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RAYLEIGH'S PRINCIPLE

Consider the differential eigenvalue problem for a string in transverse
vibration fixed at x=0 and supported by a spring of stiffness k at x=L.

d {T(x)dy(x)-l = Ap(X)Y(x), O<x <L, A = w?
dx dx 47 (x) |
Y(x)=0atx =0, T(x) d; FkY (x) =0atx = L

» Exact solutions are possible only in relatively few cases,
= Most of them characterized by constant tension and uniform mass
density.
» In seeking an approximate solution, sacrifices must be made, in the
sense that something must be violated.

= Almost always, one forgoes the exact solution of the differential
equation, which will be satisfied only approximately,

= But insists on satisfying both boundary conditions exactly.
=
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RAYLEIGH'S PRINCIPLE

Rayleigh's principle, suggests a way of
approximating the lowest eigenvalue, without
solving the differential eigenvalue problem

- Iy
directly. _f Y(x)f— [T(x)d};(x)]dx
RY)=A=w?= "0 - * - i
f p(x)Y*(x)dx
0

Minimizing Rayleigh's quoz‘/ém‘ IS equivalent to
solving the differential equation in a weighted
average sense, where the weighting function is

Y(X).
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RAYLEIGH'S PRINCIPLE

Boundary conditions do not appear explicitly in
the weighted average form of Rayleigh's quotient.

To taken into account the characteristics of the
system as much as possible, the trial functions
used in confunction with the weighted average
form of Rayleigh's quotient must satisfy all the

boundary conditions of the problem.

Comparison functions: trial functions that are as
many times differentiable as the order of the
system and satisfy all the boundary conditions.
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RAYLEIGH'S PRINCIPLE

The trial functions must be from the class of
comparison functions.

» The differentiability of the trial functions Is
seldom an issue.

»But the satisfaction of all the boundary
conditions, particularly the satisfaction of the
natural boundary conditions can be.

In view of this, we wish to examine the
Implications of violating the natural boundary
conditions.

ﬂ
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RAYLEIGH'S PRINCIPLE
X L—l—/OLT(x),:dZ)(CX)]de

L
—f v L [T(x)dy(x)}dx — vy rmPW
0 dx dx dx |
-2

L
= [ T (x) [di;(x) dx +kY?*(L)
0 x

Vi = I[LT( [ &) y + 1kr2)
* 2 Qo i dx 2

Vimax

e Lt
! Tret = E/O p(JC)YZ(JC)dX

R(Y)=)A=w?=

Rayligh’'s quotient involves V.., and T, which are defined for trial
functions that are half as many times difterentiable as the order of the

system and
» need satisfy only the geometric boundary conditions,

» as the natural boundary conditions are accounted for in some
fashion.
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RAYLEIGH'S PRINCIPLE

» Trial functions that are half as many times
differentiable as the order of the system and satisfy the
geometric boundary conditions alone as admissible
functions.

= |n using admissible functions in conjunction with the
energy form of Rayleigh's quotient, the natural boundary
conditions are still violated.

= But, the deleterious effect of this violation is somewhat
mitigated by the fact that the energy form of Rayleigh's
quotient, includes contributions to V, ., from springs at
boundaries and to 7,.from masses at boundaries.

» But iIf comparison functions are available, then their
use Is preferable over the use of admissible functions,
because the results are likely to be more accurate.
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Example: Lowest natural frequency of the
fixed-free tapered rod in axial vibration

0= (4G raa- 22 [ 46"

The 15t mode of a uniform clamped-free rod

X

a trial function: U(x) = sin —
as (x) Sm2L'\

A comparison function

LEA [dU(x) 2d
R(U)=w2=/0 e ] : Sy (7T )2 (L/127%)(57* + 6)
f U (1)dx m \2L/ (L/127%)(57* —6)
O .

EA
w=17749y/ —

mlL?
.
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THE RAYLEIGH-RITZ METHOD

The method was developed by Ritz as an
extension of Rayleigh's energy method.

» Although Rayleigh claimed that the method
originated with him, the form in which the
method Is generally used is due to Ritz.

The first step in the Rayleigh-Ritz method is to

construct the minimizing sequence:
Y(”(x) =ad1(x) undetermined coefficients

Y(z)(x) a1¢1(x)+a2¢2(x) Za b (x) /independent trial functions

i=1

YO (6) = ar61(0)+ a2206) + -+ ann () = 3 e O
' ' i=1
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THE RAYLEIGH-RITZ METHOD

AW = R(Y™) = R(ay, a, ... ,a,)

OR JR OR
SR = —dajq oar + ... oa, = 0
3(11 3&2 aan
The independence of the trial functions implies
the independence of the coefficients, which in turn
Implies the independence of the variations

oai,oas, ..., 0a,—>»

OR
—=0,i=1,2,....,n

aa,;
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THE RAYLEIGH-RITZ METHOD

N(ay,ar,...,a
A(n) =R(a1,a2,... san): ( 72 n)

D(alaa%--- aan)

— — —

9R (8N /da;))D —(dD/da;)N 1(3N NaD)

861;' l)2 ID 8(1,7 Daai
1 fON aD
= AW V=0 i=1,2,...,n
D \ dy; da;
aN oD
AW =0,i=1,2,...,n

da; da;

Solving the equations amounts to determining the coefficients, as well
as to determining )} )
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THE RAYLEIGH-RITZ METHOD

To illustrate the Rayleigh-Ritz process, we
consider the differential eigenvalue problem for
the string in transverse vibration:

1 (L daY®WmT 1 |
N = Vyax = = f T (x) *x) dx + —k[Y " (I)]?
2 0 dx 2

n

1 L ddi(X) o~ doj) 1 -
:5—[0 T(x)Zai o Zaj [;x dx+5k;ai¢i(L);aj¢j(L)

L doi(x) d
—ZZ% UO Ty qb(x) ¢;(x)d +k¢l(m¢](m]

dx
i=1 j=I :

= EZZ’CUCIIGJ

i=1 j=1 .

L
D =Ter = —;— f pOLY () dx = 5 szua aj

L ;1]1
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THE RAYLEIGH-RITZ METHOD

| 1 n n 1 non
N = EZkaaraS D = > Zmea,—aS

r=1 s=1 r=1 s=1
a—a-* 1 szm (aar a0+ aas) szm@”as +ayb5;)
! : r—~1 s=1 r=1s5=1
| D
— % (Zk;sas—l—zkﬁar) kaas | | oa; Zzlmisas
s=1 r=1 - =

stas /\(”)Zm”as, i=1,2,.

K(”) ) — )\(n) FORD
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Example : Solve the eigenvalue problem for
the fixed-free tapered rod in axial vibration

. . . (2i—Dmx N
The comparison functions ¢;(x) = sin 57 ,i=1,2,...,n

L L
Vax = l[ EA(x) [dU(x)] dx  Tref = 1] m(x)Uz(x)dx
2__: 0 dx 2 0

n

- (n) (n) (2f— I)ﬂ'}CI
U“(x) Za f,b;(X)—X; =7

Vmﬁzﬂzzk(m (), () wa__zz () (n) (n)

i=1j=1 i=1 j=1
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Example :

L
() doi(x) dpj(x) |
kij -/0 EA(x) o p dx

dx,

6EA Qi — D7 2j — D7 L[ 1 /x\2 i —Dmx  (2j— Drmx
= / 1 — ( )]cos COS
0

5 2L 2L 2\L 2L 2L

' L
m® = fo m ()i ()5 ()dx

L

dx,i,j=1,2,....n

6m (L 1 /x\2] . Qi—=Drx . 2j—Dnx
= — 2( ) S1n S

5 Jo | 2 21 2L
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Example: n=2

K(z)_ EA[ 1.383701  0.337500 ] MO L[ 0.439207  0.075991 ]

L | 0337500 11.253305 0.075991 0.493245

2 _ EA (9) 1] 1511481
“1 "1'774312\/ oz M =mLT s

B EA a® 12| —0.233683 |
— 4.825444. | =2
S2oddd— T A =ml) 1.443148

3
U@ (x) = 1.511481sin — —0.015311sin ——
oL oL

3
U3 (x) = ~0.233683sin 2 +1.443148sin =

@-
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Example: n=2

(2)
Ui (x)
1 1
X
0 }
= 17743 | g
2) 1= 1. mL2
1U2(x)

_1 ] 0y = 4. - LZ
School of Mechanical Engineering
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Example: n=3

| 1.383701  0.337500 —0.104167

K =— 0.337500 11.253305 2.109375

—0.104167 ~ 2.109375  30.992514

0.439207 0.075991 —0.021953
MO =mL 0.075991 0.493245  0.064592
—0.021953 0.064592  0.497568

EA
W\ =1.774247 —. al’ = (mL)"1/?

EA
wy =4.822187, — . a 2l = (mL)~"/

@-
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1.511715
—0.015872
0.002829

—0.236352
1.448321

| —0.040348

EA |
W =7.931607,/ —, a3 = (mL)~'/?
mL?

0.097373
—0.163450
1.432793




(3)

Example : n= 3|

Up(x)

m1_1.7742 ml2 0 -

(3)
Uj (x)
1..
| EA
> = 4.8222 mLZ 0
11!
(3)
Us{x)
1 N
EA
w3=17.9316 /ng 0
11
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Example :

The Ritz eigenvalues for the two approximations
are:

AP =3.148183EA/mL?, A =23.284913E A /mL>

A =3147951EA/mE2, A =23.253490EA/mL?, NP = 62.910394EA /mL>

» The improvement in the first two Ritz natural
frequencies is very small,

* Indicates the chosen comparison functions
resemble very closely the actual natural modes.

»Convergence to the lowest eigenvalue with six
decimal places accuracy Is obtained with 11
terms: A"V =3.147888EA/mL?

@-
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Truncation

Approximation of a system with an infinite number
of DOFs by a discrete system with n degrees of
freedom implies truncation:

an_{_l :an+2:-..:O

Constraints tend to increase the stiffness of a
system:

A‘S‘H) EA;-, ?"21,2,...,?’1

The nature of the Ritz eigenvalues requires
further elaboration.
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Truncation

A question of particular interest is how the
eigenvalues ™’ ¢ =1,2,...,n+1) of the (n +1)-DOF
approximation relate to the eigenvalues,®» ¢ —1,2.... .»
of the n-DOF approximation.

We observe that the extra term In series does not
affect the mass and stiffness coefficients
computed on the basis of an n-term series
(embedding property):

X X
Ayt M x x (1) _ K™ x
| XX ox X X X

@-
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Truncation
For matrices with embedding property the

eigenvalues satisfy the separation theorem:

®)
A, A" 1.3
3
G )
--.~_/})3 )
S~al A 2.6
2«3F— ———————————————————————————————
2)
A |
G.__. &2(3)
~. ()
oL
""'-.é?___ 12(5) 2.(6)
) Aty
2—--————-- ————————————————————————
(1)
1 2)
- A 3)
ﬂLl ___________________ ::O:::::%::::QI
0 1 2 3 4 5 6
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+1 (n+1) (n) | (n+1) (n) (n+1)
APHD < AP < A0 <A << ATTD < A <0

n+1

AUFTD < AW r =1,2,... 1

¥ 3

lim AX™ =X\, r=1,2,...,n

l—» 00



Distributed-Parameter Systems:
Approximate Methods

»Rayleigh's Principle

» The Rayleigh-Ritz Method

»An Enhanced Rayleigh-Ritz Method

»The Assumed-Modes Method: System Response
» The Galerkin Method

» The Collocation Method
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Distributed-Parameter Systems:
Approximate Methods

»Rayleigh's Principle

» The Rayleigh-Ritz Method

»An Enhanced Rayleigh-Ritz Method

»The Assumed-Modes Method: System Response
» The Galerkin Method

» The Collocation Method
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Rayleigh-Ritz method (contd.)

» How to choose suitable comparison functions, or
admissible functions:

v the requirement that all boundary conditions, or
merely the geometric boundary conditions be
satisfied is too broad to serve as a guideline.

» There may be several sets of functions that could be
used and the rate of convergence tends to vary from
set to set.

> It Is Imperative that the functions be from a complete
set, because otherwise convergence may not be
possible:

v power series, trigopnometric functions, Bessel
functions, Legendre polynomials, etc.
"
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Rayleigh-Ritz method

> Extreme care must be exercised when the end involves a discrete
component, such as a spring or a lumped mass,

= As an illustration, we consider a rod in axial vibration fixed at x=0
and restrained by a spring of stiffness kA at x=L:

AU (x)

EA(x) +kU(x) =0, x =L
X

» If we choose as admissible tunctions the eigentunctions of a uniform
fixed-free rod, then the rate of convergence will be very poor:

(2i -1
¢i(X)=Siﬂ( : 2L)m’ i=1,2,....,n

» The rate of convergence can be vastly improved by using
comparison functions:

(,zb,g(x) =sinfix, i=1,2,...,n
EA(L)B;cos BiL+ksinB;L =0,
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Rayleigh-Ritz method

Example : Consider the case in which the end x = L of
the rod of previous example is restrained by a spring
of stiffness k = EA/L and obtain the solution of the

eigenvalue problem derived by the Rayleigh-Ritz
method:

1) Using admissible functions ¢; (x) = sin(2i — 1)wx/2
2) Using the comparison functions ¢;(x) = sin 3;x,

=S [ -2 [ ]
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Example: Using Admissible Functions

L d o dob
k% = f EAG) 22 ¢’(x)dx+k¢f(L)¢j<L)
L 0 dx dx
o P L 2 | — 2j—Dmx
:6EA Qi —1D7m 2j l)ﬂ‘/ 1_1(_{) }cos (2i — Dmx COS( J )frxdx
5 2L 2L 0 2 \L 2L 2L
EA 2i —1 2j—1
—I-Tsin(lz )wsin(J2 )'H, i, j=12,....n

L
mf;l) 2/0 m(x)gbi(x)%(x)dx

2

—

L

[

= S
5

6m (L 1 /x°\2] . Qi—Drx . 2j—Drmx
= | ( ) sin n dx
0 2L 2L
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Example: Using Admissible Functions,
Setting n=2

c@ _ EAT 2383701 —0.662500
- —0.662500  12.253305

L
- EA [ 1.471927
@) [E2 @ — (mpy12
Wi =2.272914 —, aj” = (mL) 0.160018] |

EA _12| —0.415467
(2) _ a2 1/2 _
=5, 1390491/mL2, = (mL) 1.434331 ]

[ 0.439207 0.075991 ]

@ _
] M =mE] 0075991 0493245

3mrx
D (x) = 1.471927 sin > +0.160018 sin ——
U7 (x) A719 $1n2L+ : sin 2L

3
U (x) = —0.415467sin ;T—L +1.434331 sin ;Lf |
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U\ x)

|EA
)= 2.27729 mL2

2
Us“(x)

1 5.1390 /74
—1 i W, =3,
2 mL2
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Example: Using Admissible Functions,
Setting n=3

2.383701 —0.662500  0.895833 0.439207 0.075991 —0.021953
K® = —0.662500 12.253305 1.109375 | M® =mL| 0.075991 0.493245  0.064592
0.895833  1.109375 31.992514 ~0.021953  0.064592  0.497568
= [ 1.468344 ]
w =2253516,/ —=, a® = (mL)"2|  0.162283
mL? | —0.054500 |
A [ —0.400771 |
wy) =5.128225\/ — a3 = (mL)”'*| 1422469
" 0.075563
5 0.184319
wi¥ =8131483,/ — al¥ = mL)™V/?| -0.273582
ml | 1.430333 |

(3) ' . X . 3nx ' . Smx
U,;”" = 1.468344 sin — 162283 sin —— — 0. —_—
] | sin oL +0 83sin L 054500sin 57

3
UP = 0. 400771 sin 2— +1.422469sin 2—- +0.075563 sin %’TL_X

(3) X 3mx Smx
U, =0.184319sin — — (0.273582 sin —— 4 —_
3 sin T 0. sin L +1.430333sin o7
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U x)

1 )
| ) | i
0 \ L 1= 2.2535 mLz
Us™(x)
1
/ . | EA
0 _ L C?z= 5.1282 ml 2
-1 ]
U3 (%)
1
0 ' / X EA
\/ 7 03=8.1315] 12
1! | .

Q
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Example: Using Admissible Functions,

» The convergence using admissible functions is
extremely slow.

»Using n = 30, none of the natural frequencies
nas reached convergence with six decimal
nlaces accuracy:

w30 =2.218950,/ EA/mL?,

w0 =5.102324, EA/mL2,

W0 =8.118398,/ EA/mL>
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Example: Using Comparison Function

$i(x) =sinfBix, i =1,2,...,n
BiL =2.215707, 8oL =5.032218, B3L =8.057941, ...

K(2)=§£ 2.783074  0.836697 M@)_mL 0.563196 0.085462
L | 0.836697 13.223631 0.085462 0.513392

@) EA o L2 1339519 7
W _22.164711/;1?2—,3&):(;%[,) K

2) | EA (o 12| —0.165180 ]
“2 = 5.10630s iz 2 =L s

U (x) = 1.339519_sin2.215707% —0.052177sin 5.032218%

Us? (x) = —0.165180 Si“2-215707% +1.412652 sin5.032218%
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Example: Using Comparison Function

A 2.783074  0.836697 —0.247107
K@) = 0.836697 13.223631  2.623716
—0.247107 2.623716  33.078693

0.563196 0.085462 —0.020523
—0.020523 0.070501 0.505321

MG):mLI: 0.085462 0.513392  0.070501

EA [ 1.340184
Wi =2.215728,/ . ap” = (mL)/? | —0.054456
ml 0.010464

| = T _0.1617149
W) =5.100701, ) —— —, al) = (mL)~1/? 1.419516
Fe1

| —0.05382]

— | T 0.067503

WD = 8124264, | =, af = (mL)/*| —0.155385
mL 1.422089
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Example: Using Comparison Function

Convergence to six decimal places Is reached by
the three lowest natural frequencies as follows:

W =2215524,/ EA/mL2,

WM =5.099525,/EA/mL2,

W20 =8.116318,/ EA/mL?
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AN ENHANCED RAYLEIGH-RITZ
METHOD

Improving accuracy, and hence convergence rate,
by combining admissible functions from several
families,

= each family possessing different dynamic
characteristics of the system under

consideration

U( ) . TX | X
X) = dj sl o S11l —
;2oL L
\
Free end Fixed end
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AN ENHANCED RAYLEIGH-RITZ
METHOD

The linear combination can be made to satisfy the
boundary condition for a spring-supported end

EA(L) (al—zcoszz +a2£coszr£) —I—k(a1 sinfrri —I-CIQSiHE) |
oL 2L 'L L/, 2L L/|,_,
- —EA(—L)aZ% +kay =0
kL
(i — ; a
2T READ)
U( ) . wx kL 7wx
x)=qaq |sin — —sin —
_ YWUUOL T REAWL) T L
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AN ENHANCED RAYLEIGH-RITZ
METHOD

Example: Use the given comparison function
given in conjunction with Rayleigh's energy
method to estimate the lowest natural frequency

of the rod of previous example.

U . OTX kL . TTX
A - S1n
) =sinort At L

k=EA/L. EA(L)=0.6 EA
VIIIE[K

| Tref

R(U(x)) =W’ =
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AN ENHANCED RAYLEIGH-RITZ

METHOD

1 L
Vinax = #/ EA(x) [
2 J0 '-

(6E A

03

5 .

N
—r

Do | ==

.

)

+2><0 530516— — COS — COS A

(6EA

0

0

L

dx

1— =
2

2L L

()]

(Z

v

mX

2L

—kUZ(L)

X

2L

(71')2 6 X
27 COS’ EY)

X

-- 2
+0.5305162 (%)

'y B
— -— 0530516—(,05—
( cossT L

Tx\2
dx +k
L) * }

5 TX
i -
COS ] X + 7

L

EA

_EA
= %(2.383701 +2 % 0.530516 x 1.363968 +0.530516” x 4.784802) ——

1
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AN ENHANCED RAYLEIGH-RITZ
METHOD

1 1 . TX . TXN\Z
| Tref = E/(; m(x)UZ(x)dx_———/ [ —5 —) ](Sm 2—L+0.53051631nf) dx
1 6m 1 /x\2 5 TX TX TX
— == 2 % 0. 530516 sin — sin —
~275 ) [1 Z(L) ](Sm o T 2L L

10.5305162 sin? ?) dx

%(0 439207—|—2 x 0. 530516 X 0 415189—|—0 5305162 x 0. 515198) -

i 5.177584 EA EA
_ _ = 2.247798.] ==
= 5 x 102473 TmL g \/1.024737 mL? " " mL?
w—w{” 2247798 —2.215524
_ | —0.014358 = 1.4%
w 2.247798 ’
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AN ENHANCED RAYLEIGH-RITZ METHOD

> It Is better to regard al and a2 as independent
undetermined coefficients, and let the Rayleigh- Ritz
process determine these coefficients.

» This motivates us to create a new class of functions
referred to as quasi-comparison functions
v' defined as linear combinations of admissible

functions capable of satisfying all the boundary
conditions ofthe problem

U () ,ﬂ'x_l_ ,7rx_|_ ,37rx+ n  nTX
X)) = 1§11l — a» S1I — az Sifl ——— i, S1It ——
DL T T T SO L

" _1 [7TX

= ) a;sin——

ol 2L
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AN ENHANCED RAYLEIGH-RITZ
METHOD

» One word of caution is In order:

= Each of the two sets of admissible functions is complete

v'As a result, a given function in one set can be
expanded in terms of the functions in the other set.

« The implication is that, as the number of terms n
Increases, the two sets tend to become
dependent.

* When this happens, the mass and stiffness
matrices tend to become singular and the
eigensolutions meaningless.

= But, because convergence to the lower modes tends to
be so fast, in general the singularity problem does not
have the chance to materialize.
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AN ENHANCED RAYLEIGH-RITZ
METHOD

Solve the problem of privious example using the
guasi- comparlson functlons

(”)(x) — Za, D; (x) = Za; smwrx/ZL n=273,...

i=1 =1

L doi(x) doj(x)
(n) __ J
ki —/0 EA(x) T 0 dx +kpi(L)g; (L)

6EA im jr (L 1 EA '
= il “”r/ [1—5(1) ]cosﬂcosmdx+—sinljsinﬂ,

5 2L2L L 2L 2L L 2 2
L 6m I 7x\2 [TTX X
fj) — fo m(JC)Qf): (X)(j)] (x)dx — ? A [1 — 5 (Z) ] sSin Z sin ]2—L—~dx,
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Example: n=2

@ _ EAT 2383701 1363968 7,y _ ;[ 0439207 0.415189
L | 1363968 4.784802 0.415189 0.515198

(2) EA (2) —~1/2 - 1.159578
=2 223595\/ mp2 A1 = k) 0.357015

o A o o[ 2.866064
=5.984845\/ —7, ay;" = (mL)" 7| ensnas

(2)(1:) — 1. 1595788111;—— 1 0.357015 sm -—g

U (x) = 2.866064 sin gi —2.832235 sin _?z_x

@-
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Ul( )(x)

D N EA
0 _ _ _ L 601=2.2236 mLz

2)
Uz (x)

. ~[EA
9y = 59848 mL2

Q
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Example: n=3

EA

k@ =24
L

@-

(3)
wz =

o) =

2.383701

1.363968

1.363968 4.784802

| —0.662500 5.703086

u® =

EA
W =2216154,| —, a” = (mL)~'/?
mL
EA
5100072,/ ——, a5’ = (mL)~"/?
m L

- E A _
11.092640,/ —, a{” = (mL) 1/2[
mL?
m School of Mechanical Engineering
Iran University of Science and Technology

—0.662500 |

5.703086

12.253305 _

mL

0.439207
0.415189
0.075991

0.415189
0.515198
0.306358

1.028923 |

0.519181

—0.113326 |
0.217568 |

—0.705970
1.778731

—9.597960
11.040485

—5.308067

0.075991 "
0.306358
0.493245 |




3
U Xx)

1 —
| X EA
0 w=2.2162 iy
U
{1 | |

U_s§3)(x}

\_/

| | - EA

-1 [
@
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AN ENHANCED RAYLEIGH-RITZ

METHOD
n | W mL2JEA | WP VmL2JEA | W\ /mL?/EA
1 | 2329652 — —
2 2.223595 5.984845 -
3 2.216154 5.100072 11.092640
4 2.215568 5.099571 8.153645
5 2.215527 5.099528 8.116320
6 2.215524 5.099525 8.116318

03
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Distributed-Parameter Systems:
Approximate Methods

»Rayleigh's Principle

» The Rayleigh-Ritz Method

»An Enhanced Rayleigh-Ritz Method

»The Assumed-Modes Method: System Response
» The Galerkin Method

» The Collocation Method
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