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Abstract

Bolted lap joints have significant influence on the dynamical behaviour of the assembled structures due to creation of

strong local flexibility and damping. In modelling the dynamical behaviour of assembled structures the joint interface

model must be represented accurately. A nonlinear model for bolted lap joints and interfaces is proposed capable of

representing the dominant physics involved in the joint such as micro/macro-slip. The joint interface is modelled using a

combination of linear and nonlinear springs and a damper to simulate the damping effects of the joint. An estimate of the

response of the structure with a nonlinear model for the bolted joint under external excitations is obtained using the

method of multiple scales. The parameters of the model, i.e. the spring constants and the damper coefficient, are functions

of normal and tangential stresses at the joint interface and are identified by minimizing the difference between the model

predictions and the experimentally measured data.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

All structural assemblies have to be joined in some way, by bolting, welding and riveting or by more
complicated fastenings such as smart joints. It is known that the added flexibility introduced by the joint to the
structure heavily affects its behaviour and when subjected to dynamic loading, most of the energy is lost in the
joints. Determining the relevant physics of each joint is critical to a validated full body model of the structure.
The two most common mechanisms of joint mechanics are frictional slip, and slapping [1]. These mechanisms
have their own characteristic features, e.g. frictional slip becomes saturated at very high amplitudes and
slapping pushes energy from low to high frequencies.

There are two common approaches used in identification of the joint properties. The first approach employs
non-parametric identification methods and is widely used since no assumption about the properties of the joint
is required. In this approach the joint flexibility and damping effects are modelled using added terms such as
an equivalent excitation force which produces the same effects as a joint in the dynamic behaviour of the
e front matter r 2005 Elsevier Ltd. All rights reserved.
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structure. Crawley and Aubert [2] identified the properties of a structural joint using an experimental
technique called ‘‘force-state mapping’’. In this method the force transmitted through a structural element
such as a joint is regarded as the mechanical state of that element. Ren et al. [3] proposed a general purpose
technique capable of identifying the force–response relationship of a nonlinear joint by treating the effects of
the joint in the structure as an external force. They predicted the response using the principle of Multi-
Harmonic Balance (MHB) and identified the dynamic characteristics of nonlinear joints using the
experimentally measured responses. Ren and Beards [4] extracted joint parameters using measured frequency
response functions of the structure. They used the difference between the dynamic properties of the sub-
structures and the assembled structure and ideally supposed that this difference is caused by the joint effects.
Ma et al. [5] studied the effects of a lap joint placed between two cantilever beams while the assembly is excited
using a concentrated force acting parallel to the bolt axis. This type of excitation creates slapping at the joint
interface in low bolt preload and high level of excitation. They treated the joint effects as an external force and
identified the state of the joint by comparing the dynamic response of the bolted structure with the
corresponding monolithic structure (the same structure without the joint). They experimentally obtained
responses of the structure and observed non-proportional damping and nonlinear softening effects in the
structure due to micro-impact in the bolted joint.

The second approach in modelling joints employs parametric models. In contrast with non-parametric
models, in using the parametric models it is necessary to have a good understanding about the involved
physics of a joint. Common phenomena in the joint interface are micro/macro-slips/slaps that cause energy
dissipation and nonlinearity in the joints. Most parametric models are proposed to represent the nonlinearity
and energy dissipation due to slip in the joints. Reviews on joint friction models are presented by Ferri [6],
Gaul and Nitsche [7] and Ibrahim and Pettit [8]. A widely used model to represent the stick-slip response of the
jointed structures is proposed by Iwan [9] consisting of a spring and a slider in series. Iwan used a combination
of parallel/series spring-slider elements to describe the hysteresis behaviour of materials and structures. Song
et al. [10] presented the so-called adjusted Iwan beam element to model the nonlinear effects of a bolted joint
in assembled structures. Gaul and Lenz [11] used experimental observations and demonstrated that the
behaviour of a lap joint in a rod like structure can be represented by an adjusted Iwan model. Their studies
show that hysteresis loops measured at different excitation force levels have different slopes, i.e. as the level of
force increases, the slope of hysteresis loop decreases, indicating a softening nonlinearity effect in the system.
Hartwigsen et al. [12] used experimental observations to quantify the nonlinear effects of a typical shear lap
joint in a beam with a bolted joint in its center, and in a frame with a bolted joint in one of its members. The
experimental results showed several effects in the dynamics of structure attributed to the shear lap joint,
namely reduction in the natural frequencies due to softening stiffness, nonlinear hardening damping effects,
and slight distortions of the mode shapes, which alter drastically the measured FRFs. They also examined the
ability of Iwan model to capturing the experimentally observed joint effects. Ouyang et al. [13] conducted
experimental study on dynamic behavior of a single lap bolted joint experiencing slippage under different
levels of bolt preload and excitations. They demonstrated as micro-slip develops in the joint, the hysteresis
loop further deviates from an ellipse and there is more contribution from super-harmonics in the frequency
spectrum. Existence of odd number super-harmonics in the frequency spectra indicates the existence of a cubic
stiffness term in modelling. They also demonstrated that the Jenkins-element model can represent the joint
friction in the sense that it is capable of reproducing the experimentally measured hysteresis loops.

In the current work a parametric model for the bolted lap joints is presented. The proposed model consists
of a combination of linear and nonlinear springs with a viscous damper capable of representing the dissipation
energy of the joint. A closed form solution for the frequency response of the assembled beam with nonlinear
joint interface properties is obtained using the method of multiple scales. The calculated frequency response
functions of the assembly with joint nonlinearity are then compared with the experimental observations to
identify the joint parameters. In the experimental work the excitations force is applied parallel to the bolt axis
and the force is kept at moderate level to create slip in the joint. In vicinity of the first mode of the beam
assembly at moderate level of excitations, slipping is the dominant nonlinear mechanism at the joint interface.
At higher level of excitations slapping may become the dominant effect. The parameters of the joint interface
are identified by minimizing the discrepancies between the measured and the calculated frequency response
functions.
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2. Statement of the problem

The bolted structure considered in this work is shown in Fig. 1. It includes two identical linear Euler/
Bernoulli free-free beams connected at one of their free ends by a bolted joint. A block mass is placed at one
end of beam assembly in order to excite the joint interface adequately in the lower modes. Depending on the
amount of bolt preload, one expects to observe nonlinear dynamical effects due to (a) dry friction at the area
of contact of the beams leading to hysteresis loops in the force–displacement plots, and (b) micro-impacts or
micro-slips caused by the looseness of the joint which leads to softening phenomena. Such nonlinear effects
can drastically affect the dynamics of the bolted structure, and the proposed characterization methodology
must be capable of modelling them accurately. The basic idea in the proposed methodology is to model the
bolted joint interface with a nonlinear spring which resembles the softening effect of the joint interface at
certain level of stresses in the interface.

The Euler–Bernoulli beam assembly considered here has a nonlinear flexibility at x ¼ L=2 (see Fig. 1). The
equations of motion for each part of the beam are:

EI
q4W 1ðx; tÞ

q4x
þm

q2W 1ðx; tÞ

q2t
¼ F ðtÞdðxÞ, (1)

EI
q4W 2ðx; tÞ

q4x
þm

q2W 2ðx; tÞ

q2t
¼ 0, (2)

where EI, m, W 1ðx; tÞ; W 2ðx; tÞ and F ðtÞ are flexural rigidity, linear mass density, lateral displacement at each
of the two parts of the beam, and the point excitation on the beam at x ¼ 0, respectively. The boundary
conditions of the problem are defined as

q2W 1ð0; tÞ

qx2
¼

q3W 1ð0; tÞ

qx3
¼ 0; EI

q3W 2ðL; tÞ

qx3
¼M

q2W 2ðL; tÞ

qt2
; EI

q2W 2ðL; tÞ

qx2
¼ �J

q3W 2ðL; tÞ

qt2qx
, (3)

where M and J are the mass and moment of inertia of the tip mass, respectively. Next we turn our attention to
the compatibility requirements at the joint interface. To simplify the problem, one may neglect the mass effects
of the joint interface and equate the bending moments and the shear forces of the two beam parts at the
interface as

q2W 1ðS; tÞ

qx2
¼

q2W 2ðS; tÞ

qx2
;

q3W 1ðS; tÞ

qx3
¼

q3W 2ðS; tÞ

qx3
. (4)
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Fig. 1. The free–free beam/model with a lap joint.
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Further compatibility requirements are defined by considering the joint interface behaviour. The shear
stiffness of the joint is expressed using a linear translational spring, K1, as

�EI
q3W 1ðS; tÞ

qx3
¼ K1ðW 2ðS; tÞ �W 1ðS; tÞÞ. (5)

One may use a combination of linear and nonlinear springs to model micro-impact in the joint. In this paper
the experiments are performed in vicinity of first resonant frequency. The excitation force produces micro-slips
in the joint at these frequencies. This phenomenon can be modelled by considering a nonlinear bending
stiffness for the joint. Therefore a combination of linear torsional spring, Ky, a cubic torsional spring, K3, and
a torsional viscous damper, C is adopted to model the joint interface, i.e.

EI
q2W 1ðS; tÞ

qx2
¼ C

q2W 2ðS; tÞ

qtqx
�

q2W 1ðS; tÞ

qtqx

� �
þ Ky

qW 2ðS; tÞ

qx
�

qW 1ðS; tÞ

qx

� �
� K3

qW 2ðS; tÞ

qx
�

qW 1ðS; tÞ

qx

� �3

.

(6)

The cubic stiffness and viscous damping terms represent the saturation phenomenon and energy loss at the
joint interface in the presence of high-level vibrations. In the following, solution to the above problem using
the method of multiple scales is presented.
3. The analytical solution

In this section, solution of the governing equations stated in Eqs. (1) and (2), satisfying the compatibility
requirements at the joint, along with the associated boundary conditions is sought. The method of multiple
scales is applied directly to these equations. Solutions for each part of the beam are assumed of the forms:

W 1ðx; t; �Þ ¼W 10ðx;T0;T1Þ þ �W 11ðx;T0;T1Þ, (7)

W 2ðx; t; �Þ ¼W 20ðx;T0;T1Þ þ �W 21ðx;T0;T1Þ, (8)

where T0 ¼ t is the fast time scale, and T1 ¼ � t is the slow time scale. Behaviour of the system is investigated
near the resonance frequency. The linear undamped theory will predict unbounded oscillations at the
resonance point no matter how small the excitation force is. In the considered system these large oscillations
are limited by the damping and nonlinearity. Thus to obtain a uniformly valid approximate solution of this
problem, one needs to order the excitation so that it will appear when the damping and the nonlinearity
appear [14,15]. Therefore the forcing function, the nonlinear stiffness and the damping due to micro-slips are
ordered as

F

m
¼ �f ;

C

m
¼ �m;

K3

m
¼ �KN . (9)

The derivatives with respect to the new time scales are defined as

d

dt
¼ D0 þ �D1;

d2

dt2
¼ D2

0 þ 2�D0D1; Dn ¼
q

qTn

. (10)

Inserting the new variables into the system equations and sorting the obtained equations based on the
orders of � one obtains:
3.1. Order �0

The governing equations:

D2
0W 10 þ

EI

m
W iv

10 ¼ 0; D2
0W 20 þ

EI

m
W iv

20 ¼ 0. (11)
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The boundary conditions:

W 000
10ð0;T0;T1Þ ¼W 00

10ð0;T0;T1Þ ¼ 0,

EIW 000
20ðL;T0;T1Þ ¼MD2

0W 20ðL;T0;T1Þ,

EIW 00
20ðL;T0;T1Þ ¼ �JD2

0W 0
20ðL;T0;T1Þ. ð12Þ

The compatibility requirements:

W 000
10ðS;T0;T1Þ ¼W 000

20ðS;T0;T1Þ;W
00

10ðS;T0;T1Þ ¼W 00
20ðS;T0;T1Þ,

EIW 00
10ðS;T0;T1Þ ¼ KyðW

0
20ðS;T0;T1Þ �W 0

10ðS;T0;T1ÞÞ,

EIW 000
10ðS;T0;T1Þ ¼ �K1ðW 20ðS;T0;T1Þ �W 10ðS;T0;T1ÞÞ. ð13Þ

3.2. Order �1

The governing equations:

D2
0W 11 þ

EI

m
W iv

11 ¼ f cosðOtÞdðxÞ � 2D0D1W 10,

D2
0W 21 þ

EI

m
W iv

21 ¼ �2D0D1W 20. ð14Þ

The boundary conditions:

W 000
11ð0;T0;T1Þ ¼W 00

11ð0;T0;T1Þ ¼ 0,

EIW 000
21ðL;T0;T1Þ ¼MD2

0W 21ðL;T0;T1Þ þ 2MD0D1W 20ðL;T0;T1Þ,

EIW 00
21ðL;T0;T1Þ ¼ �JD2

0W 0
21ðL;T0;T1Þ � 2JD0D1W

0
20ðL;T0;T1Þ. ð15Þ

The compatibility requirements:

W 00
11ðS;T0;T1Þ ¼W 00

21ðS;T0;T1Þ,

W 000
11ðS;T0;T1Þ ¼W 000

21ðS;T0;T1Þ,

EI

m
W 00

11ðS;T0;T1Þ ¼ mD0ðW
00
20ðS;T0;T1Þ �W 00

10ðS;T0;T1ÞÞ þ
Ky

m
ðW

0

21ðS;T0;T1Þ �W
0

11ðS;T0;T1ÞÞ

� KN ðW
0

20ðS;T0;T1Þ �W
0

10ðS;T0;T1ÞÞ
3,

EIW 000
11ðS;T0;T1Þ ¼ K1ðW 11ðS;T0;T1Þ �W 21ðS;T0;T1ÞÞ, ð16Þ

where ð Þ0 ¼ q=qx.
Assuming the response of the structure is dominated by a single mode,Y iðxÞ, one may write the solution to

the set of equations of order �0 as

W 10ðx;T0;T1Þ ¼ ðAðT1Þe
ioT0 þ ccÞY 1ðxÞ,

W 20ðx;T0;T1Þ ¼ ðAðT1Þe
ioT0 þ ccÞY 2ðxÞ, ð17Þ

where o is the natural frequency of the structure and cc is the complex conjugate term for each part of the
solution. The assumed solution transforms zero order equations to the following form:

Y iv
1 � l4Y 1 ¼ 0; Y iv

2 � l4Y 2 ¼ 0; l4 ¼ mo2=EI (18)

with the boundary conditions of the form:

Y 0001 ð0Þ ¼ Y 0001 ð0Þ ¼ 0; EIY 0002 ðLÞ ¼ �Mo2Y 2ðLÞ; EIY 0002 ðLÞ ¼ Jo2Y 02ðLÞ (19)

and the following compatibility conditions:

Y 001ðSÞ ¼ Y 002ðSÞ; Y 0001 ðSÞ ¼ Y 0002 ðSÞ; EIY 001ðSÞ ¼ KyðY
0

2ðSÞ � Y 01ðSÞÞ; EIY 0001 ðSÞ ¼ �K1ðY 2ðSÞ � Y 1ðSÞÞ.

(20)
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The general solution of Y i; i ¼ 1; 2 are:

Y 1ðxÞ ¼ A1 sinðlxÞ þ B1 cosðlxÞ þ C1 sinhðlxÞ þD1 coshðlxÞ,

Y 2ðxÞ ¼ A2 sinðlxÞ þ B2 cosðlxÞ þ C2 sinhðlxÞ þD2 coshðlxÞ, ð21Þ

where the coefficients Ai;Bi;Ci;Di; i ¼ 1; 2, are obtained by satisfying the boundary conditions and the
compatibility requirements.

The homogeneous Eqs. (11)–(13) have a non-trivial solution; therefore the non-homogeneous problem
(14)–(16) will have a solution only if the solvability condition is satisfied. To determine this condition, the
secular terms ji and non-secular terms V i are separated by assuming a solution of the form:

W 11 ¼ j1ðx;T1Þe
ioT0 þ V 1ðx;T0;T1Þ þ cc,

W 21 ¼ j2ðx;T1Þe
ioT0 þ V 2ðx;T0;T1Þ þ cc. ð22Þ

The excitation frequency O is assumed to be close to the natural frequency of the dominant mode which
governs the system response, i.e.:

O ¼ oþ �s. (23)

Substituting Eqs. (22) and (23) into the first-order Eqs. (18)–(20), secular terms are obtained as

jiv
1 � l4j1 ¼ �2ioY 1D1Aþ

f

2
dðxÞeisT1 , (24a)

jiv
2 � l4j2 ¼ �2ioY 2D1A. (24b)

Using the concept of the adjoint problem, one may obtain the solvability condition of the problem which
ensures uniformity of the expansion of the dependent variables. To begin, Eq. (24a) is projected into its adjoint
solution Y 1 over the range of x ¼ 0::S, and Eq. (24b) is projected into its corresponding adjoint solution Y 2

over the range ofx ¼ S::L. Satisfying the boundary conditions along with the compatibility equations, one
arrives at the following solvability condition:

3A2AKN ðY
0
2ðSÞ � Y 01ðSÞÞ

4
� imoAðY 02ðSÞ � Y 01ðSÞÞ

2

� 2ioD1A 1þ
M

m
Y 2ðLÞ

2
þ

J

m
Y 02ðLÞ

2

� �
þ

f

2
Y 1ð0Þe

isT1 ¼ 0. ð25Þ

In extracting the solvability condition, one considers only the secular terms, i.e. the coefficient of eioT0 and
its conjugate, and neglects the coefficient of the other harmonies such as the third-order super-harmony
ei3oT0and its conjugate e�i3oT0 .

In a steady-state response the coefficient A is constant therefore Eq. (25) is simplified to the following
frequency response equation:

mp

2q

� �2

þ sþ
3KNa2p2

8oq

� �2
" #

a2 ¼
fY 1ð0Þ

2oq

� �2

; a ¼ 2 Aj j; p ¼ ðY
0

2ðSÞ � Y 01ðSÞÞ
2; q ¼ 1þ

M

m
Y 2ðLÞ

2
þ

J

m
Y 02ðLÞ

2.

(26)

For identification purposes, one may compare the calculated frequency response function with the
corresponding measured curve and fine tune the unknown parameters so that the analytical function and the
measured values come to an acceptable agreement.

4. Experimental case study

Fig. 2 shows the test set-up for measuring the dynamic response of a bolted beam assembly. A tip mass is
added to one end of the structure to increase the bending moment and transverse shear force at the joint
interface. The suspended free–free structure is excited using a mini-shaker. The excitation force is applied in
point A and the response of the assembled structure is measured at point B; both points are shown in Fig. 1.
The bolt is tightened with a fixed preload which remains constant during the experiment.
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Initially the structure is excited with a low-level pseudo-random force and the first three natural frequencies
of the linear structure are obtained. Fig. 3 shows the corresponding FRF of the linear structure indicating
three bending modes which are tabulated in Table 1. These modes will be used to identify the linear system
defined in Eqs. (18)–(20).

Next the structure is excited using sinusoidal forces at two different force levels of 47.6 and 90.6mN to
obtain its linear and nonlinear responses. The linear and nonlinear frequency response functions of the beam
measured at point B are shown in Fig. 4. The frequency response curves are obtained in the vicinity of the first
mode by exciting the structure at each individual frequency and clearly demonstrate the joint softening
Fig. 2. The test set-up.
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Fig. 3. The Frequency Response Function of the linear structure.

Table 1

Measured and predicted modes of the linear model

Mode no. 1 2 3

Measured (Hz) 86.44 264.37 517.37

Predicted (Hz) 86.44 265.63 518.28

Error (%) 0.0 0.48 0.18
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phenomenon due to micro-slips in the joint interface. The force at node A vs. the displacement at node B is
shown in Fig. 5a. The curve clearly shows softening effect due to the joint properties. Analysing the response
of the structure shows two common frequencies in the response, the excitation frequency and its third super-
harmony, as expected. The third super-harmony produces softening effect in the force–displacement curve and
when this harmony is omitted from the response as shown in Fig. (5b) the softening effect in the curve
vanishes. In the next section the joint interface parameters are identified using the measured responses.

5. Identification of the joint parameters

The linear parameters of the joint, i.e. the lateral stiffness K1 and the torsional stiffness Ky, are identified
using the first three natural frequencies of the linear system. This is achieved by minimizing the differences
between the measured natural frequencies and the corresponding model predictions. Table 1 shows the results
of updating of the linear model, indicating a good agreement between the two models.

The damping coefficient, C, and the nonlinear spring coefficient, K3, are identified using the nonlinear
response functions of the structure shown in Fig. 4. For a given excitation level, the peak amplitude of the
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nonlinear frequency–response curve is a function of the damping value and K3 produces the shift in the peak
frequency. Thus, knowing the amplitude at the peak and the frequency shift, it is possible to estimate the
damping coefficient and the effective nonlinearity of a system [16]. Differentiating Eq. (26) with respect to the
detuning parameter s and setting the results to zero to get the peak location, one finds the following relations
between the peak amplitude, the peak frequency, and the parameters of the nonlinear system:

m ¼
f Y 1ð0Þ
�� ��
opa

; �KN ¼ �
8oqðO� oÞ

3p2a2
, (27)

where o ¼ 86:44Hz is first natural frequency of the linear system, a is the peak amplitude of the nonlinear
response function and O ¼ 86:34Hz is the corresponding peak frequency. The parameters of nonlinear model,
namely C andK3, are calculated using Eq. (27) and are tabulated in Table 2.

A good agreement between the predictions of the identified nonlinear model and the measured responses are
achieved as shown in Fig. 6.
Table 2

The identified joint parameters

K1 (N/m) Ky (N/rad) K3 (N/m3) C (N s/m)

8.089� 108 3264 3.722� 108 0.281

Fig. 7. The measured (circle) and predicted (solid line) hysteresis loops: left 86Hz, right 86.75Hz.
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Fig. 7 shows the experimental and analytical hysteresis loops at 86 and 86.75Hz. These two frequencies are
just before and after the resonant frequency and loops clearly show a significant phase shift (close to 1801) due
to the transition from resonant frequency. The experimental hysteresis loops are obtained by filtering the
third-order super-harmony from the experimental responses.

6. Conclusions

A model for an Euler–Bernoulli beam with bolted lap joint in the mid span is presented. The joint is
modelled using a nonlinear spring to represent the softening phenomenon of the joint interface due to slip. An
approximate solution for the dynamical behaviour of assembled structure is obtained using the method of
multiple scales. The solution provides frequency response function of the beam at any desired location due to a
point excitation at a certain location. The obtained frequency response function is compared with the
corresponding experimental counterparts to identify the parameters of the bolted joint interface. In the
identification procedure joint interface parameters are fine tuned so that the differences between calculated
and measured frequency responses are minimized.
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