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In this paper, we present on a periodic job shop scheduling problem (PJSSP) based on the periodic event
scheduling problem (PESP), which is different from cyclic scheduling. The PESP schedules a number of
recurring events, such that each pair of events fulfills certain constraints during a given time period.
To solve such a hard PJSS problem, we propose a hybrid algorithm, namely EM–SA, which is based on
electromagnetism-like mechanism (EM) and simulated annealing (SA). To evaluate this proposed EM–
SA, some randomly constructed instances are solved, and the related results are compared with SA
and optimum solutions obtained by the branch-and-bound (B&B) algorithm. The results demonstrate
the efficiency and effectiveness of the proposed hybrid EM–SA algorithm to solve the PJSSP.

� 2010 Published by Elsevier Ltd.
1. Introduction

The job shop scheduling problem (JSSP) is known to be one of
the most interesting combinational optimization problem that
has been the subject of many research studies during the last three
decades. A periodic job shop consists of a set of n jobs that should
be processed on a set of m machines each job consists of a prede-
termined sequence of task operations where each of which re-
quires to be processed without preemption on a single machine
that can handle at most one job at a time. A periodic schedule is
an assignment of operations to time slots with the maximum
length of T, on corresponding machines. The objective is to find
the sequence of all the jobs in such a way that total (weighted) tar-
diness is minimized. For instance, Naderi, Khalili, and Tavakkoli-
Moghaddam (2009a) solved an extended JSSP with a specific case
of machine availability constraints by the artificial immune algo-
rithm (AIA) hybridized with a SA algorithm. They considered se-
quence-dependent setup times and preventive maintenance (PM)
operations minimizing the total completion time. Sha and Lin
(2009) constructed a particle swarm optimization (PSO) for a
multi-objective JSSP, called MOPSO. The objectives include the
minimization of makespan, total tardiness, and total machine idle
times. Pan and Huang (2009) proposed a hybrid genetic algorithm
to solve the no-wait job shop problems based on an asymmetric
traveling salesman problem formulation followed by a local search
that explore a better solution region. It is worthy to note that the JSSP
belongs to NP-complete problems (Garey, Johnson, & Sethi, 1976).
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In this paper, we study the periodic JSSP that is formulated
based on the periodic event scheduling problem (PESP) introduced
by (Serafini & Ukovich, 1989). Before introducing the PESP, the cyc-
lic scheduling (CS) problem, which is different from the PJSSP, is
shortly reviewed. In this problem, a set of activities is to be re-
peated an indefinite number of times, where the primary objective
function is to minimize the period length. CS problems arise in do-
mains that the sequence of jobs are repeated, such as synthesis of
digital signal processing, course scheduling, railway timetabling,
robotics, automated manufacturing systems, time-sharing of pro-
cessors in embedded systems and in compilers for scheduling loop
operations for parallel or pipelined architectures. The primary
objective is to minimize the period length. The CS problem is gen-
erally studied in two different ways. The first one does not address
resource constraints. The basic cyclic scheduling (BCS) problem
falls in this category. Brucker and Kampmeyer (2008) studied a
general basic cyclic scheduling problem (GBCS) where the objec-
tive is to minimize the cycle time. In contrast with the first cate-
gory, the cyclic job shop scheduling problem (CJSSP) contains the
resource constraints. Kimbrel and Sviridenko (2008) introduced a
bi-objective CJSSP, in which the jobs are all the same, and the sche-
dule is processed in a cyclic mode, where the objectives are mini-
mizing the cycle time and the flow time. Cavory, Dupas, and
Goncalves (2005) studied the CJSSP with linear precedence con-
straints and presented a general approach based on the coupling
of a genetic algorithm and a scheduler that utilizes a Petri-net
modeling the linear precedence constraints between cyclic tasks.
Song and Lee (1996) presented a tabu search procedure for the
periodic JSSP. Song and Lee (1998) also investigated the scheduling
problem for a general CJSSP with blocking where each machine has
annealing and electromagnetism-like mechanism for a periodic job shop
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an input buffer with the finite capacity. Moreover, they proposed a
MIP model to find an optimal sequence and schedule that is dead-
lock-free and has the minimum cycle time. On the other hand, the
PESP approach is used where the period length is constant, and the
objective is to minimize the completion time of jobs. This approach
has a special application in constructing different types of
timetables.

This paper is organized as follows. Section 2 deals with present-
ing a summary of the PESP and the PJSSP. Section 3 presents the
proposed electromagnetism-like mechanism (EM) and simulated
annealing (SA) algorithms, as well as the hybridization of these
algorithms. The computational results are presented in Section 4.
The conclusion remarks are given at the end to summarize the con-
tribution of this paper.

2. Periodic job shop scheduling problem (PJSSP)

The PJSSP discussed here is based on the periodic event sched-
uling problem (PESP) firstly introduced by Serafini and Ukovich
(1989) and is defined as the problem of scheduling some periodi-
cally repeating events subject to certain constraints. Serafini and
Ukovich (1989) showed that the PESP is NP-complete. Further-
more, Liebchen and Peeters (2001), Odijk (1994), Nachtigall
(1996) are also investigated the complexity of the PESP. Given a
time period T, a set of events V, and a set of periodic interval con-
straints C, every constraint (e.g., a) is associated with a pair of
events (i, j) as well as a lower bound la and an upper bound ua.

It is intended to find an schedule through encoding the set of
periodic interval constraints imposed on the timetable in an
event-activity graph D = (V, C) with node set V and arc set C.

By the above definitions, in PESP each pair of events must sat-
isfy the corresponding constraints. In other words, a solution of a
PESP instance is a node assignment p: V ? [0, T) that satisfies Eq.
(1) by

ðpj � pi � laÞ mod T � ua � la; 8a 2 C ð1Þ

Where mod stands for the modulo operator, and pi is the occurrence
time of event i correspondence with the completion time of each
operation in a PJSSP environment. It is worth noting that one can
scale an instance such that 0 6 la < T, and ua � la < T. In order to be
able to use, with da < T. To apply integer programming techniques,
the following reformulation of inequality (1) is used.

la � pj � pi � T � za � ua ð2Þ

In other words, by the assumption of za e Z inequality 2 can be re-
placed with inequality 1. The newly defined variable za is called
periodical offset of the activity a. To further illustrate the issue, con-
sider an example of a PESP, with three events, four constraints and
time period T = 60, and the constraint graph shown in Fig. 1. The
problem is to find pi and zi, "i = 0, 1, 2, where the following first
two constraints are satisfied and one of the two last constraints
are fulfilled.
Fig. 1. A small PESP instance.
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6 � p1 � p0 � 60z0 � 18; and � 8 � p1 � p2

� 60z1 � 9; and ð�48 � p0 � p2 � 60z2 � 30 or 0
� P2 �P1 � 60z1 � 16Þ

For more details, the interested reader may refer to Kinder (2008).
Liebchen and Peeters (2001), Odijk (1994), Nachtigall (1996) and
Serafini and Ukovich (1989) showed that the PESP is NP-complete-
ness for fixed T P 3.

Operations in the PJSSP have the role of events in the PESP.
Therefore, to reach the formulation of the PJSSP, the constraints in-
volved with the scheduling of operations must be updated based
on the introduced PESP approach. Following notations are em-
ployed in the mathematical model of the PJSSP.
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set of machines

J
 set of jobs

wi
 the weight (priority) of job i

di
 due date of job i

ri
 release date of job i

oi
 the first machine of the route correspondence with job i

ei
 the last machine of the route correspondence with job i

Pijm
 processing time of the jth operation of job i that is on

machine m

T
 time period length

xik
 A positive variable indicates the completion time of job i

on machine k
The mathematical formulation of the PJSSP, called Model P1, is as
follows:

min
X
i2P

wi �maxfðxiei
� dÞ;0g

pivk � xik � xih � T � 1; ði; v � 1;hÞ � ði; v ; kÞ; 8i 2 J; 8k; h 2 M

ð3Þ
pivk � xik � xjk � zijk � T � T � pjv 0k; 8i; j 2 J; 8k 2 M ð4Þ
xio1 � piuoi

� ri; 8i 2 J ð5Þ
di ¼ 0 and wi ¼ 1

where (i, v, k) represents the vth operation of job i which must be
processed on machine k, and zijk 2 Z ð8i; j 2 J and 8k 2 MÞ.

The objective function of the above model (P1) is to minimize
the total weighed tardiness, and in a special case, where for all jobs
di = 0, and, wi = 1 can be interpreted as the minimization of com-
pletion time of jobs. Constraint 3 represents the precedence of each
job, where the vth operation of job i is performed on machine k.
Periodic interval constraint 4 ensures that no two operations are
processed simultaneously by the same machine constraint 5 spec-
ifies that the first operation related to each job must be started
after the associated release date. Note that operation u corresponds
with the process of job i on machine oi.

3. Proposed EM-SA algorithm

To solve the defined PJSSP, and specially large-scale problems,
in a rational amount of time, this section represents the proposed
hybrid algorithm consisting of electromagnetism-like mechanism
dom keys as the encoding scheme.
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(EM) and simulated annealing (SA) algorithms for the PJSSP. To
that end, it is intended to present an encoding scheme in order
to be applied as a useful method in order to generate schedules.
Then, SA and EM algorithms are separately reviewed and adjusted
for the PJSSP introduced in the Section 2. Finally, the hybridization
procedure of these algorithms is discussed to present the EM-SA
algorithm.
3.1. Encoding scheme

An appropriate representation of the candidate schedules plays
a key role in the effectiveness of any algorithm. Using random keys
(RKs) as the encoding scheme is the most frequently used, and is
easy to adjust to the EM and SA algorithms (Chang, Chen, & Fan,
2009; Naderi, Tavakkoli-Moghaddam, & Khalili, 2009b; and
Tavakkoli-Moghaddam, Khalili, & Naderi, 2009; Lin & et al., 2009).

The searching space of the PJSSP contains permutation of n jobs
on m machines, and therefore each schedule is represented with
the relative order of n �m operations. In this paper, the permuta-
tion of jobs is shown through random keys. To that end, a random
number between 0 and 1, called random key, is assigned to each
operation and these random keys show the relative order of the
jobs. To illustrate the issue, consider a problem with three jobs
each of which must be performed on two machines. Each job con-
sists of two operations and therefore six operations can be defined:
{1 1 2 2 3 3}. In the next step in order to define the permutation of
operations, for each of them, a random number is randomly gener-
ated from a uniform distribution between 0 and 1. These RKs are
then sorted to find the relative order of operations, as shown in
Table 1.

3.2. Simulated annealing (SA) algorithm for PJSSP

Simulated annealing (SA) is one of the most popular meta-heu-
ristics algorithms in scheduling optimization research area that has
its origin in the fields of material science and physics. In annealing,
a metal is first heated to a high temperature and then cooled with a
slow rate to the room temperature. In SA to escape from local op-
tima, even moves resulting in solutions of the worse quality than
the current solution may be accepted. At the first steps of the pro-
cedure, SA is started at a high temperature (Temp0), so most of the
moves are accepted, on the opposite side, when the temperature, or
probability of accepting a worse solution, is nearly zero, this simply
seeks the bottom of the local optima. The chance of finding a good
solution can be traded off with the computational time by slowing
down the defined cooling factor procedure.

The employed notations of the SA algorithm are as follows.
P
sc
k

lease cite this a
heduling probl
the iteration counter

Tempk
 the temperature in the kth iteration

sk
 the kth schedule

S0
 the neighborhood schedule of s

Temp0
 the initial temperature in the first iteration

sbest
 the best found solution

TWT(s)
 the total weighted tardiness value of schedule s

a
 the cooling factor
Fig. 2. Infeasibility of PJSSP.
The general outline of the SA algorithm for the PJSSP is summarized
as follows.

Step 1. Initial conditions: Set Temp0 and a based on the desired
running time and Section 3.2.4. Let k 0.

Step 2. Generating the initial solution: Select an initial solution, s
based on the desired running time and the Section 3.2.4.
Let sbest s.
rticle in press as: Jamili, A., et al. A hybridization of simulated
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Step 3. Checking the infeasibility: If s is infeasible, go to Step 2;
otherwise, go to Step 4. The infeasibility checking is based
on Section 3.2.1.

Step 4. Generating the neighborhood solution: Generate a neighbor-
hood solution, s’, using schedule s based on Section 3.2.3.

Step 5. Checking the infeasibility: If s’ is infeasible go to Step 4;
otherwise, go to Step 6. The infeasibility checking is based
on the Section 3.2.1.

Step 6. Checking the acceptance condition: TWT(s0) 6 TWT(s) or ran-
dom [0, 1] < exp{(�TWT(s)-TWT(s0))/Tempk} then s s0.
Note that random [0, 1] is a function that generates ran-
dom values between 0 and 1. If TWT(s0) 6 TWT(sbest) then
sbest s.

Step 7. that the sequence of jobs are repeated, such as synthesis of
digital signal processing, course scheduling, railway timet-
abling, robotics, If the termination criterion, in this paper
is to perform a fixed number of iteration, is not satisfied
then Tempk = a � Tempk�1, k k + 1 and go to Step 4; pre-
emption on a single machine that can handle at most one
job at a time. A periodic and return sbest.

3.2.1. Characteristics of a feasible solution
In non-periodic JSSP (i.e., classic JSSP), schedules are generated

based on the orders that are given to the operations that always
leads to a feasible solution. However, as specified in proposition
1, this method may result in infeasibility in the PJSSP.

Proposition 1: There is no feasible solution for the instances, in
which the following condition is held:

Condition: 9k 2 M, such that
P

i2Jpijk > T , where the jth operation of
job i should be performed on machine k.

Proof: The result immediately follows from the definition of the
PJSSP, which schedules some repeating operations in a time
interval with period length T0.

In general, a feasible schedule is the one that for each machine,
all assigned operations must be scheduled in a time interval less
than the pre-specified period length. To clarify the issue, consider
Fig. 2 which depicts two time slot allocation scheme. It is intended
to schedule six operations in the period length of T in a machine. As
shown in this figure, the first time allocation is infeasible, because
there is no interval to locate job 6 in the period length, while the
second one is feasible, where all six operations are scheduled in
a time interval with period length of T.
3.2.2. Method of Initial solution generation
As explained in Section 3.2.1, finding an initial feasible schedule

may not be so easy. For this reason, we experimentally observe
that following algorithm outperforms others.

1. FLFS rule: Find an initial schedule based on the first leave first
served (FLFS) rule. In this procedure when two or more jobs
annealing and electromagnetism-like mechanism for a periodic job shop
a.2010.11.034
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compete for the same machine, the precedence is given to the
one which leaves the machine first.

2. Feasibility checking #1: Check the feasibility of the schedule. If
the schedule is feasible terminate the algorithm; otherwise,
go to Step 3.

3. FIFO rule: Find an initial schedule based on first in first out
(FIFO) rule. In this procedure, when two or more jobs compete
for the same machine, the precedence is given to the one which
waits more.

4. Feasibility checking #2: Check the feasibility of the schedule. If
the schedule is feasible terminate the algorithm; otherwise,
go to Step 5.

5. RKs method: Find an initial schedule based on generating ran-
dom keys. Go to Step 4.

3.2.3. Method of Neighborhood solution generation
The following algorithm known as single point operator is uti-

lized in order to generate a neighborhood candidate:

1. Job selection: Select one of the jobs randomly.
2. RKs alteration: Regenerate the random key associated with the

selected job.
3. Neighborhood checking: If the order of operations is changed,

terminate the algorithm; otherwise, go to Step 1.

3.2.4. SA parameter tuning
To improve the performance of the introduced SA algorithm,

parameters T0 and a, are tuned in this subsection. To that end, as
shown in Table 2, for each parameter, three levels are tested, and
therefore, 32 designs are applied. Moreover, 15 different instances
are randomly generated and solved by assuming each of 32 = 9 dif-
ferent combinations of (T0, a). The termination condition is to per-
form the algorithm by 3000 iterations.

To compare the instances, the relative deviation index (RDI) is
used for the TWT as a common performance measure. This index
is obtained by:

RDIl
K ¼

Fl
k �Mink

Maxk �Mink
� 100 ð6Þ

where Fl
k is the TWT value of the kth instance by using lth combina-

tion of parameters. Mink and Maxk are the best and worst TWT val-
ues obtained for each instance.

Fifteen instances are randomly generated in different combina-
tions of the number of jobs and the number of machines. Each in-
stance is solved considering one of the combinations of T0 and a.
Therefore (15 � 3 � 3=), 135 instances are totally solved. The re-
lated results are analyzed by the means of the analysis of variance
(ANOVA) technique. The normality and homogeneity of variance
and independence of residuals do not show any particular pattern
in experiments. Fig. 3 depicts the interaction plot for parameters T0

and a. It is concluded that the combination T0 = 150 and a = 0.97
results in statistically better output than other evaluated
combinations.

3.3. Electromagnetism-like mechanism (EM)

Electromagnetism-like mechanism (EM) is a population based
meta-heuristic that has been proposed to solve continuous prob-
Table 2
Three levels of SA parameters.

Level 1 Level 2 Level 3

T0 100 200 300
a 0.9 0.94 0.98

Please cite this article in press as: Jamili, A., et al. A hybridization of simulated
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lems effectively. Gol-Alikhani, Javadian, and Tavakkoli-Moghad-
dam (2009) presented a novel hybrid approach based on EM
embedded with a well-known local search, called Solis and Wets,
for continuous optimization problems. They compared related re-
sults with two algorithms known as the original and revised EM.
In general, EM simulates the attraction–repulsion mechanism of
electromagnetism theory that is based on Coulomb’s law. Each par-
ticle represents a solution, and the charge of each particle relates to
its objective function value (OFV). The better OFV of the particle,
the higher charge the particle has. To compute the force between
two points, a charge, such as value qi, is assigned to each point.
The charge of the point is calculated according to the relative effi-
ciency of the objective function values in the current population, as
given in Eq. (7).

qi ¼ exp �n� f ðxiÞ � f ðxbestÞPpopsize
j¼1 ðf ðxjÞ � f ðxbestÞÞ

 !
;

8i ¼ 1; 2; . . . ; popsize ð7Þ

where qi is the charge of particle i. In addition, f(xi), f(xbest), and f(xj)
denote the objective values of particle i, the best solution, and par-
ticle j, respectively. Finally, popsize is the population size. In this
way, the points that have better objective function values possess
higher charges. Note that, unlike electrical charges, no signs are at-
tached to the charge of an individual point in the Eq. (1); instead,
the direction of a particular force between two points is determined
after comparing their objective function values. The total force, Fi,
exerted on candidate solution i is also calculated by:

Fi ¼

Ppopsize
j–i ðxj � xiÞ

qj�qi

kxj�xik2 ; f ðxjÞ < f ðxiÞPpopsize
j–i ðxj � xiÞ

qj�qi

kxj�xik2 ; f ðxjÞP f ðxiÞ

8<
: ð8Þ

A two-dimensional example total force vector, Fi, exerted on candi-
date solutions is shown in Fig. 4. The force exerted by x1 on x3 is F13

(repulsion: the objective function of x1 is worse than that of x3), and
the force exerted by x2 on x3 is F23 (attraction: the objective function
of x2 is better than that of x3). F3 is the total force exerted on x3 by x1

and x2.
The next procedure is to move the candidate solutions based on

the total force calculated by Eq. (8). All the candidate solutions are
moved with the exception of the current best solution. The move
for each candidate solution is in direction of total force exerted
on it by a random step length. This length is generated from
uniform distribution between (0, 1), see Eq. (9). We can guarantee
that candidate solutions have a nonzero probability to move to
the unvisited solution along this direction by selecting random
length.
annealing and electromagnetism-like mechanism for a periodic job shop
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Fig. 5. Means plot and LSD intervals for popsize.

Fig. 6. General outline of the hybrid algorithm.

Fig. 4. Example of exertion of forces.
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xik ¼ xik þ Randomð0; 1Þ � Fikð1� xikÞ; Fik > 0
xik ¼ xik þ Randomð0; 1Þ � FikðxikÞ; Fik � 0

�
ð9Þ

The proposed EM algorithm is applied for the given PJSSP.
Step 1. Generating initial schedules: Generate popsize initial sched-

ules: sr
1 , r=1,. . .,popsize. If each of the popsize generated

schedules is infeasible, re-generate it until all the sched-
ules are feasible. Find the TWT value for each particle.
Set Pr

l  sr
1.

Step 2. Schedule updating: Calculate qr and Fr for each schedule.
Update the schedules based on Eq. (9).

Step 3. Infeasibility checking: If each of the updated schedules is
infeasible set sr

1  Pr
l If the OFV of each of the schedules

improved let sr
1  Pr

l . Update Pg.
Step 4. Termination condition: If the termination criterion is not

met, go to Step 2; otherwise, return Pg as the best found
schedule.

where Pr
l is the best local solution that the rth particle has

achieved. Pg is the best solution obtained in the whole population.
The procedure to find initial and neighborhood solutions are simi-
lar to the SA algorithm. The parameters of the proposed EM are
tuned in the following subsection.

The population size of the proposed EM is only required to be
tuned. Similar to the proposed SA, a full factorial design in the
DOE approach is applied. We consider three levels (e.g., 5, 10 and
20) for this parameter. To that end, 15 different instances are ran-
domly generated. The stopping criterion is to perform 10000

popsize
iterations.

The RDI also used for the TWT as the performance measure to
compare the instances. The means plot and least significant differ-
ences (LSD) intervals (at the 95% confidence level) for the levels of
the popsize parameter are shown in Fig. 5. It is concluded that the
popsize, which is equal to 15, results the best among other investi-
gated levels.

3.4. Hybrid EM–SA algorithm

The idea of the proposed hybrid algorithm, called EM–SA, based
on SA and EM algorithms for job shop problems has been widely
exploited in the literature (Naderi et al., 2009b; Zhang, Shao, Li,
& Gao, 2009; and Tavakkoli-Moghaddam et al., 2009). EM is a pop-
ulation-based meta-heuristic that is to solve continuous problems
effectively. Moreover, SA is a meta-heuristic that is designed for
finding a near-optimal solution of combinatorial optimization
problems. Therefore, the EM and SA algorithms are combined
which can omit the concrete velocity-displacement updating
method in the traditional EM for the PJSS problem. On the other
hand, the solved initial instances demonstrate that the perfor-
mance of EM strongly depends on the initial solution. To that
Please cite this article in press as: Jamili, A., et al. A hybridization of simulated
scheduling problem. Expert Systems with Applications (2010), doi:10.1016/j.esw
end, the final SA solution is used as one of the initial solutions of
the EM algorithm.

The proposed EM-SA hybrid algorithm includes two phases. In
the first phase, SA obtains a good initial solution. In the second
phase further to the final solution of the SA algorithm, the other re-
mained initial solutions are randomly generated. Then, the EM
algorithm combined with the SA algorithm is run. The main steps
of the proposed hybrid algorithm for the PJSSP are summarized as
follows.

Step 1. Generating the initial schedules: k 1. Run the SA algo-
rithm, and consider the found solution as the first initial
schedule. Generate popsize-1 initial random schedules. If
any of the generated schedules is infeasible, reconstruct
them until all the initial solutions are feasible. Set
Pr

l  sr
k and update Pg.

Step 2. Schedule updating #1: For each of the particles, run the SA
algorithm. If each of the updated schedules is infeasible,
set sr

k  Pr
l . Furthermore, in the case of improvement in

the TWT value of each of the schedules, let Pr
l  sr

k.
UpdatePg.

Step 3. Schedule updating #2: Update the particles by exerting the
repulsion and attraction forces of the particles to each
other using Eqs. (7)–(9).

Step 4. Infeasibility checking: In the case of infeasibility of the
updated schedules set sr

k  Pr
l .

Step 5. Termination condition: Find the objective value for each
particle. Update Pr

l and If termination criterion is not satis-
fied, then k k + 1 and go to Step 2; otherwise, return the
Pg as the best found schedule.

The general outline of the proposed EM-SA hybrid algorithm is
summarized in Fig. 6.

3.4.1. Parameter tuning
Further to the parameters that are separately tuned for the SA

and EM algorithms, we need to tune the main parameters engaged
in the hybrid algorithm to find any possible interaction between
parameters. To that end, a full factorial design in the DOE is
annealing and electromagnetism-like mechanism for a periodic job shop
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Fig. 7. Interaction plot for the SA-EM parameters.

Table 3
Outputs of the proposed algorithms.

Job Machine Period Algorithms

SA EM-SA Optimum

6 6 105 Inf. Inf. Inf.
6 6 120 353 331 275
6 6 150 193 193 167
6 6 300 181 169 167
6 7 120 387 355 325
6 7 150 257 216 196
6 7 180 189 180 180
6 7 300 189 180 180
6 8 180 177 177 177
6 8 360 177 177 177
6 10 180 Inf. Inf. Inf.
6 10 210 183 183 165
6 10 300 183 183 165
8 8 180 Inf. Inf. Inf.
8 8 210 323 323 323
8 8 300 323 323 323

Inf. stands for Infeasible.
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applied. We consider two levels (i.e., 10 and 20) for the popsize and
four levels for the number of iterations (i.e., 0, 2, 5, 10) defined in
the SA algorithm. If the latter parameter is considered 0, it means
that we consider the traditional EM without benefiting the SA algo-
rithm. For other levels of the SA iteration parameter, we set a fixed
initial temperature to 150 and the cooling factor to 0.32, 0.63, and
0.79 for levels 2, 5, and 10, respectively. The related results are
shown in Fig. 7. According to this figure, it is concluded that the
best pair is 10 for both population size and SA iteration number,
which is accompanied with 0.7 for the cooling factor parameter.

4. Experimental results

To illustrate the effectiveness and performance of the hybrid
algorithm (i.e., EM-SA) proposed in this paper, it is coded in VB
on a Laptop with Pentium IV Core 2 Duo 2.53 GHz CPU. The outputs
of this hybrid algorithm are compared with that achieved by the SA
algorithm alone and also the optimum solutions achieved in an
hour running time. Some instances are randomly generated. Each
instance is characterized by a number of parameters, such as num-
ber of jobs, number of machines, and operation routes of jobs, re-
lease dates of jobs, due dates, processing times, and the period
length. All the generated instances are based on the following
assumptions specified below:

1. All jobs meet all machines.
2. The routes correspondence with the jobs are randomly

generated.
3. The release dates corresponding to each job are equal to zero.
4. Processing times are all randomly generated integer numbers

between the interval [10, 20].
5. The objective is to minimize the TWT, where the weights are

equal to 1, and the related due dates are zero.

The related results of the given instances are shown in Table 3.
These results show that the hybrid EM–SA can improve the solu-
tions obtained by using SA alone. The improvement in the solved
instances is equal to 3.5 % in average. It is possible to find the opti-
mum solutions of the instances smaller than 8 jobs and 8 machines
in less than one hour running time. By comparing the results of
EM–SA with the optimum solutions, we conclude that the EM-SA
algorithm can achieve the optimum solutions of six instances
among 13 solved ones.

5. Conclusion

This paper has first investigated the simulated annealing (SA)
and electromagnetism-like mechanism (EM) algorithms in order
Please cite this article in press as: Jamili, A., et al. A hybridization of simulated
scheduling problem. Expert Systems with Applications (2010), doi:10.1016/j.esw
to solve the periodic job shop scheduling problems (PJSSP). Then,
an efficient hybrid EM–SA algorithm based on electromagnetism-
like mechanism (EM) and simulated annealing (SA) has been pro-
posed in order to solve periodic job shop scheduling problems
(PJSSP). The parameters associated with the algorithms are tuned
so that it is ensured that the algorithms perform in a high effi-
ciency. The performance of the proposed hybrid EM–SA algorithm
has been evaluated in comparison with the results obtained by the
SA algorithm alone as well as the optimum solutions achieved by
the branch-and-bound (B&B) algorithm after one hour running of
the Lingo software. The achieved results demonstrate the effective-
ness of the proposed hybrid EM-SA algorithm. Future research
directions can be as follows: (1) defining some other well-known
methods to solve the problem, such as branch-and-bound algo-
rithm; (2) defining the lower bounds in order to have a better com-
parison amongst the algorithms; (3) solving the PJSSP under an
uncertain environment; (4) testing other well-known meta-heuris-
tics; (5) considering other objective functions; and (6) extending
the proposed algorithm to other similar scheduling problems as
well as train scheduling one.

Up to now, a periodic scheduling problem has not been ad-
dressed by any meta-heuristic method and is an open field for
these near-optimal methods. For this reason for the future re-
search, there is a need to define specific benchmarks for measuring
the performance of the proposed meta-heuristics. The data regard-
ing the randomly generated instances are accessible by writing to
the authors.
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