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Abstract—In this paper, we present a method to incorporate
the intraband and interband terms of the surface conductivity of
graphene into the finite-difference time-domain (FDTD) method.
The method is based on approximating the surface resistivity of
graphene by a series of partial fractions in terms of real or com-
plex conjugate pole–residue pairs. Then, a discrete time-domain
surface boundary condition at the graphene sheet is generated,
which is then incorporated within the FDTD method using the
infinitesimally thin sheet formulation. Numerical examples are
presented to validate and demonstrate the capabilities and advan-
tages of the proposed approach.

Index Terms—Finite-difference time-domain (FDTD), graphene,
surface boundary condition, surface conductivity.

I. INTRODUCTION

G RAPHENE, a planar monoatomic layer of carbon
bonded in a hexagonal structure, has been shown to

provide unusual mechanical, electric, magnetic, and thermal
properties [1]. Numerous applications of graphene in a wide
spectral range (from terahertz to X-rays) have recognized it as a
versatile optical material [2], [3]. In many of these applications,
electromagnetic properties of graphene are of interest. In most
practical problems, analytic solution of Maxwell’s equations
is impossible; thus, numerical simulation methods have to be
used. Hence, geraphene has been modeled in various kind of
numerical methods such as the method of moment (MoM) [4],
the finite-element method (FEM) [5], and the FDTD method
[6]–[11]. Among the available numerical methods used to
solve Maxwell equations, time-domain methods have specific
advantages that relate primarily to computing resources and
simulation time, particularly when a wide range of frequency
is of interest. (It must be emphasized, however, that the ad-
vantages of time-domain methods are typically associated with
specific problems, such as transients, and cannot be assumed
to be universal advantages within all numerical methods.)
Specifically, the finite-difference time-domain (FDTD) method
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is highly robust with advantages such as simplicity, generality,
and ease of implementation for simulation of optical compo-
nents [12]. Accordingly for modeling of graphene in a wide
frequency band, the FDTD method could be a wise choice.
Graphene has been modeled in the FDTD method using the

following three implementations:
1) using a standard FDTD method with high discretization
density for the fields inside the graphene sheet [6]–[9];

2) using the subcell FDTD method [10];
3) by splitting the magnetic fields tangential to the graphene
sheet and using the surface boundary condition (SBC) [11].

The first two approaches treated graphene as a thin volu-
metric layer (occupying some, as in the first approach, or a frac-
tion, as in the second one, of the FDTD cells). Considering that
graphene is a one-atom thick layer, the standard FDTD approach
calls for extremely fine spatial discretization inside the graphene
layer. Consequently, the methods require extremely fine time
discretization to guarantee stability, thus incurring large com-
putational resources. On the other hand, the second approach,
which uses the subcell FDTD method, requires a special type of
PML to model infinitely thin sheets [13]. In the third approach,
graphene was modeled as a conductive surface, instead of con-
ductive volume. By implementing a surface boundary condition
(SBC) in the FDTD method and using the surface conductivity
of graphene, updating equations at and in the proximity of the
graphene surface can be derived. The third approach did not
suffer from constraint on the FDTD cell size or the constraints
of subcell methods, and hence is highly effective.
The surface conductivity of graphene had been commonly ex-

pressed by Kubo formula consisting of two contributions repre-
senting the electronic intraband relaxation and interband tran-
sitions [14]. Below a transition band, typically in the mid-in-
frared region, the intraband contribution is the dominant term
of the conductivity, with a real part that is negligible and an
imaginary part that attains negative values. Hence, graphene
can provide the features of a low-loss material with a negative
real part of the permittivity. In the transition band and beyond,
the interband contribution, which has a positive imaginary part
and a considerable real part, has to be taken into account. In
many applications, the behavior of graphene in the transition
band is of interest, especially in supporting transverse-magnetic
(TM) electromagnetic surface-plasmon polariton (SPP) surface
waves [15].
The intraband contribution is expressed by a simple Drude-

like expression, while the interband one has a complex expres-
sion [16]. Therefore, the intraband term can be directly imple-
mented in the FDTDmethod,whereas the interband term cannot.
Hence, in the earlier works, only the intraband term of graphene
conductivity was considered [6], [7], [10], [11]. Recently, the
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conductivity of graphene with both intraband and interband con-
tributions wasmodeled in the standard FDTDmethod [8], [9]. In
these works, however, the surface conductivity of graphene was
first converted to volumetric conductivity (permittivity), then,
partial fractional models were used to approximate the conduc-
tivity. The implementation of the volumetric conductivity given
by a partial fractional model in the standard FDTD follows in
a straightforward fashion. However, as mentioned above, using
the standard FDTD method incurs heavy computational burden
and long simulation time.
This paper presents a method to incorporate both the intra-

band and interband terms of graphene conductivity in a highly
efficient SBC-based FDTD method. Earlier methods proposed
for modeling complex dispersive media, such as [17], cannot be
applied for this purpose, since in those methods, the volumetric
conductivity of a medium is applied in the FDTD method. In
the SBC-based FDTD approach, however, the surface resistivity
of graphene would be required. Therefore, our approach in this
work is to incorporate a well-known rational model consisting
of real and complex-conjugate pole-residue pairs, which was
used for approximation of volumetric permittivity of disper-
sive media, to approximating the surface resistivity of graphene.
Then, a method is proposed to implement the rational model into
the SBC-based FDTD method. A full validation of the method
is presented.

II. METHOD DEVELOPMENT

Graphene is analytically modeled as an infinitesimally thin,
local two-sided surface characterized by a surface conductivity
, which can be expressed using the well-known Kubo for-

malism. In the absence of magnetostatic bias and spatial disper-
sion, the surface conductivity of chemically doped and/or elec-
trostatically biased graphene is a scalar function of frequency ,
chemical potential (which can be controlled by either an ap-
plied electrostatic bias or chemical doping), phenomenological
scattering rate (or relaxation time ), and tempera-
ture as

(1)

where is the energy, is the reduced Planck constant, is
the charge of an electron, is the Boltzmann’s constant, and

is the Fermi–Dirac Dirac distribu-
tion [14], [18]. In (1), the conductivity of graphene consists of
two terms. The first term is due to the intraband contributions.
This term can be evaluated as

(2)

The second term is due to the interband contributions. In gen-
eral, the interband term must be evaluated numerically, how-
ever, for can be approximated by its value at

as a logarithmic function [16]. It is shown that, for the
frequency , the interband term is negligible and the
intraband term is dominant; however, from , the in-
terband term cannot be neglected [16].
The fields at the graphene sheet obey the surface boundary

condition

(3)

where is the tangential component of the electric field at
the sheet, is the surface resistivity of graphene,
denotes the unit vector normal to the sheet (from side 1 to

side 2), and and are magnetic fields at the two sides
of the sheet. To implement the graphene model into the FDTD
method, (3) needs to be converted into a discrete-time relation.
This would require substituting (1) into (3). The intraband con-
ductivity, as expressed by a Drude-like expression in (2), lends
itself to a direct conversion of the frequency domain equation in
(3) [11]; however, due to the complexity of the interband term,
(3) cannot be directly converted into a discrete-time domain
relation. Therefore, a sum of partial fractions in terms of real
and/or complex-conjugate pole–residue pairs, which had been
used to approximate complex functions of frequency [19] (and
has been applied for characterizing volumetric permittivity of
complex dispersive media in optical range [17]), can be used to
approximate the surface resistivity of graphene as

(4)

where is the surface resistivity at infinite frequency

and are real

and are complex
(5)

and and are the poles and residues, respectively. The ap-
proximation parameters in (4) and(5) can be extracted using
vector fitting [19] or curve fitting [20]. (To insure causality and
stability, positive values for the real part of should be avoided
[17].) Now, the approximate form in (4) makes possible the con-
version from frequency domain to time domain. By substituting
(4) in (3), we have

(6)

where

(7)

and

(8)

Equation (7) can be easily converted into time domain as
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Converting the above relation into discrete time-domain
equation and enforcing the equation at the discrete time step ,

For implementation into a standard Yee-type FDTD method
where the and fields are evaluated at one-half time step
apart, we use the following time-averages for themagnetic fields
at time steps and :

Finally, we have

(9)
Now, we turn our attention to . Considering the definition
of in (5), (8) can also be converted into a discrete-time
domain relation. Caution must be exercised here as there are
two distinct possibilities for the types of zeros and poles that
characterize . Let us first assume real values for and
in . By substituting (5) in (8), we have

Converting the expression from frequency domain into the time
domain, we have

Next, we convert the above relation into a discrete-time equa-
tion and enforce the equation at while using the central
difference scheme for the time derivative at

where is the discrete time step. Finally, we express at
time step as the average of the fields at time steps and

:

Rearranging, we obtain

where

For the case where and are complex, substituting
(given by (5)) in (8), we have

In the above equation, can be expressed as the sum of
two terms:

(10)

where

(11)

Converting (10) and (11) into discrete time-domain equations
(in a similar way to the case where and were real values),
we can express as the sum of two non-observable field
terms

where

(12)

Since the coefficients of (12) are complex conjugate pairs and
the equations have same real initial values, we have

hence

Consequently, we can present the discrete-time domain general
field update equation as

(13)

where

and real
and complex.

Finally, representing (6) in discrete-time domain

(14)

Substituting (9) in (14), we have

(15)

where is given in (13).
Equation (15) in essence represents a surface boundary con-

dition (SBC), which can be implemented by using the recently
proposed method for incorporating an SBC into an FDTD
method [11]. The implementation is carried out by defining
magnetic and electric fields at both sides of the graphene sheet
as shown in the 3D FDTD cell in Fig. 1. Notice how in Fig. 1,



6110 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 12, DECEMBER 2013

Fig. 1. Expressing normal electric and tangential magnetic fields on both sides
of the graphene sheet in a 3-D FDTD cell.

, , and are defined immediately to the bottom and
top sides of the sheet. Next, Faraday’s law
is discretized and enforced at time step and spatial grid

and for the - and
-component, respectively. The central difference scheme is
used for time derivative and spatial derivatives along - and
-directions and backward and forward difference schemes are
used for the spatial derivatives along the -direction (normal
to the surface). For the -component of magnetic field, we
obtain [11]

(16)

where and are the permeability of the media to the bottom
and top sides of the sheet, and and are the mesh size in
the - and -direction, respectively.
It is noted that mixing central with backward/forward differ-

ence schemes had been used to model boundary conditions in
previous work and did not result in instability [11], [21]. Nev-
ertheless, as will be seen in Section III below, the formulations
presented here did not result in any instability. Now, in the above
equations, the , which is the tangential field
on the graphene surface, can be substituted using (15) by

(17)

where is the -component of given in (13). Substi-

tuting (17) in (16) and collecting and at
the left sides of equations, we obtain the following system:

where

and . and are functions of the field com-
ponents at time steps and defined as

(18)

where , , ,
, , and .

Solving the system gives

(19)

In summary, updating of and is performed using
the following steps:
1) updating using (13);
2) updating and using (18);
3) updating and using (19).
A similar procedure can be applied for updating and
. Once the tangential magnetic fields at the graphene sheet

are updated, they can be used for updating the normal compo-
nents of the electric field at the bottom and top sides of the sheet
(i.e., and ) using the classical Yee’s algorithm.
We note that the presence of magnetostatic bias and spatial

dispersion is not considered in this paper [18], [22]. Under these
scenarios, the fields updating equations at the surface (graphene
layer) need to bemodified, which could be the subject of a future
work due to interesting features of spatially dispersive and non-
reciprocal graphene demonstrated in recent publications, such
as [23]–[27].

III. NUMERICAL EXAMPLES AND VALIDATION

Two graphene layers with 0.43 meV at temperature
30 K are considered; one with 150 meV and the
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Fig. 2. (a) Real and (b) imaginary parts of the surface conductivity of graphene
for two different values of chemical potential; the solid and dashed lines (red
and green) show the conductivity determined by Kubo formula, and the marks
(dots and crosses) show the approximated conductivity using (4) where the
pole–residue pairs are given in Tables II and II. (c) Error between Kubo for-
mula and (4).

other with 65 meV. The surface resistivity of the graphene
layers is first evaluated by (1) and then is approx-
imated by (4), where the method of [20] is used to extract the
approximation parameters, , and . It is found that con-
sidering seven pole–residue pairs (one real and three complex
conjugate pairs) gives good approximation in the frequency
range of 1–100 THz. The extracted values of the poles and
residues are given in Tables I and II, where
and for 150 meV and 65 meV,
respectively. To demonstrate the accuracy of the approxi-
mation, the surface conductivities as
calculated using the rational function expressions and those
calculated using Kubo formula are shown in Fig. 2. Very strong
agreements is observed between the two expressions over the
range 1–100 THz such that the maximum error between them
is less than 1.6% (see Fig. 2(c)). Notice that the phenomeno-
logical scattering rate is assumed to be constant versus
frequency. However, for more accurate modeling of “highly

TABLE I
EXTRACTED VALUES OF POLES AND RESIDUES FOR A GRAPHENE

SHEET WITH 150 meV, 0.43 meV , AND 30 K

TABLE II
EXTRACTED VALUES OF POLES AND RESIDUES FOR A GRAPHENE

SHEET WITH 65 meV, 0.43 meV , AND 30 K

Fig. 3. Normalized transmitted electric field through the graphene layer with
150 meV.

doped” graphene in the infrared regime, a frequency-dependent
phenomenological scattering rate could be considered [28].
We emphasize that the series model given in (4) and (5) can
be applied to approximate different physical models used for
the conductivity of graphene. Hence, the applicability of the
presented FDTD method based on the series approximation
is not restricted to the constant values of phenomenological
scattering rate.
As a first example, by applying the extracted parameters in

the proposed method, we validate the method by simulating the
problem of plane-wave transmission through an infinite free-
standing graphene sheet with 150 meV. The FDTD spa-
tial mesh and the time steps are set to and

, respectively, where is the wavelength at 100
THz. The differentiated Gaussian pulse waveform

was used for temporal excitation, where 50 fs and
. The simulation was run for 200 000 time steps

(around 100 ps). Fig. 3 shows the normalized transmitted
electric field indicating that no instability was detected in the
simulation. The transmission coefficient is then obtained using
discrete Fourier transform and is compared with the analytical
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Fig. 4. (a) Transmission coefficient (T) for a normally incident plane wave
through the graphene layer with 150 meV obtained by the proposed
FDTD method and analytic solution. (b) The error between the FDTD simu-
lation and analytic results.

Fig. 5. Schematic of the FDTD computational domain. TM SPP on the ger-
aphene sheet is excited by a magnetic dipole.

expression , where is the free-space
characteristic impedance and is the surface conductivity
of graphene. The comparison between the results obtained by
FDTD method and analytic solution is shown in Fig. 4 demon-
strating strong agreement between the two solutions such that
the maximum error between them is less than 0.2% in whole
frequency band of 1–100 THz.
As a second example, we simulate TM SPP surface wave

on an infinite freestanding graphene layer by means of the pro-
posed method. Fig. 2(b) clearly shows that the imaginary part of
graphene conductivity can attain negative and positive values in
different ranges of frequencies depending on the level of chem-
ical potential. When , a graphene layer effectively be-
haves as a very thin “metal” layer capable of supporting a TM
SPP surface wave [15]. At 30 THz, the graphene layer with

150 meV has mS,
and hence it supports TM electromagnetic SPP surface wave.
In the FDTD simulation, as shown in Fig. 5, the graphene sheet
is positioned in the middle of the computational domain with
150 50 cells where the size of each cell is set to nm. The
time step is set to s to meet the
CFL stability condition. The computational space is terminated

Fig. 6. Spatial distribution of at time step 200 000 depicting TM SPP sur-
face wave on the graphene layer with 150 meV. The guided wave length
is extracted from the field distribution.

Fig. 7. Spatial distribution of on the graphene layer which divided into two
sections. The left section with 150 meV supports TM SPP, whereas the
left section 65 meV does not.

by ten cells of perfectly match layer (PML) and the graphene
boundary condition is extended into the PML along the -direc-
tion to prevent spurious reflection from the boundary. A mag-
netic dipole (two magnetic currents with opposite directions)
with a continuous sinusoidal waveform is applied for excitation
at 30 THz (see Fig. 5). Notice that the symmetry used in the ex-
citation leads to a faster steady-state response.
The spatial distribution of at time step 200 000 when the

fields reach steady state is shown in Fig. 6 clearly illustrating
the SPP surface wave on the graphene layer. The SPP guided
wavelength can be easily extracted from the steady-state
field distribution, which gives us nm 147 nm.
The guided wavelength is also determined analytically using the
formula 144.2 nm [16].
We note that similar problems were simulated using the regular
FDTDmethod in [9], where the graphene was modeled by a thin
dielectric layer with a volumetric permittivity, which was ap-
proximated from the surface conductivity of graphene. In those
simulations, the thickness of graphene layer was supposed to
be equal to the mesh size along each direction. Hence, to ob-
tain valid results, the mesh size had to be set very fine (around
1 nm). In our simulation, however, graphene was modeled as a
SBC (not a physical layer); therefore, the FDTD mesh size was
chosen around , regardless of the physical thickness of
the graphene layer. Notice the time step used in our simulation
is 16.5 times larger than that used in the simulations of [9], im-
plying significant reduction in computation resources.
As the final example, we consider TM SPP on a graphene

sheet that is divided into two sections, as shown in Fig. 7. The
chemical potential of the left section is set to 150 meV
and that of the right section is set to 65 meV. At 30 THz,
the surface conductivity of the left section is

mS, which has a negative imaginary part,
while that of the right side is

mS with a positive imaginary part (see Fig. 2). Hence, the
left section supports TM SPP, whereas the right section does
not. Consequently, if a TM SPP is launched in the left section
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towards the junction, it reflects back at that boundary line. The
field distribution obtained by FDTD simulation, which is shown
in Fig. 7, clearly exhibits this phenomenon, which is also il-
lustrated in [15, Fig. 2] where graphene is modeled by a thin
(1-nm-thick) conductive layer using CST Microwave Studio
[29]. This phenomenon has been applied to achieve transfor-
mation optics [15] and infrared switches [30].

IV. CONCLUSION

This work presents a finite-difference time-domain method
for modeling graphene whereby the intraband and interband
terms of the surface conductivity of graphene are accounted for.
This would then provide the ability to study the scattering and
transmission properties of graphene over wideband in one sim-
ulation. A rational model is used to effectively approximate the
surface resistivity of graphene using a new discrete-time do-
main surface boundary condition. The method is validated by
presenting numerical examples and comparison with analytical
solution. In comparison to methods available in the literature,
the proposed method uses significantly less computational re-
sources while maintaining high accuracy.
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