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This paper presents a control strategy, which is based on sliding mode control, adaptive control, and
fuzzy logic system for controlling the chaotic dynamics. We consider this control paradigm in
chaotic systems where the equations of motion are not known. The proposed control strategy is
robust against the external noise disturbance and system parameter variations and can be used to
convert the chaotic orbits not only to the desired periodic ones but also to any desired chaotic
motions. Simulation results of controlling some typical higher order chaotic systems demonstrate
the effectiveness of the proposed control method. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3183806�

During the last several years, several control strategies
have been proposed for chaos control, but developing a
control strategy which provides satisfactory tracking per-
formance, to be robust against external noise disturbance
and time varying system parameters, to be able to con-
vert the undesired chaotic motion to any desired motion
without requiring the equation of the motion, is still an
open problem. In this paper, we propose a control strat-
egy, which is based on synergistic combination of adap-
tive control with sliding mode control (SMC) for chaos
control. The main advantage of SMC derives from the
property of robustness to system uncertainties and exter-
nal disturbances. However, the main drawback of the
standard sliding modes is mostly related to the so-called
chattering caused by the high-frequency control switch-
ing. In order to limit the chattering phenomena and to
preserve the main advantages of the original SMC, we
propose a new SMC by combining an adaptive nonlinear
compensator with SMC and is referred to as adaptive
robust control (ARC). For controlling chaos in high di-
mensions, we design a set of independent adaptive robust
controllers. Each state variable of chaotic system has its
own controller. The results on the Duffing’s equation and
Lorenz system show that the controller provided accurate
converting of unwanted chaotic motions to any desired
motions with fast convergence during time-varying sys-
tem parameters and external noise disturbances.

I. INTRODUCTION

Now, it has been well known that the chaotic dynamics
exist in a large variety of natural systems �e.g., biological
and physical systems�. Motivated by potential applications in
physics, biological engineering, information processing, and
communication theory, control of chaotic dynamics has re-
ceived an increasing interest. The first model-free chaos con-
trol method, known as the OGY method, was presented by
Ott, Grebogi, and Yorke to stabilize one of the unstable pe-

riodic orbits �UPOs� by perturbing an accessible system pa-
rameter over.1,2 The method requires the location of the de-
sired periodic orbit that is determined via a long time series
and the linearized dynamics about the periodic orbit. The
control is activated only when the trajectory enters a small
neighborhood of the desired UPO so one has to wait for
some time for this to occur if the trajectory starts from a
randomly chosen initial condition in the basin of attraction of
the chaotic attractor.3 Even so, the controller may not be able
to bring a trajectory that is already in the neighborhood of
the desired UPO to the vicinity of the periodic orbit. In ad-
dition, the OGY method for controlling higher dimensional
chaotic systems is quite difficult.4 Its difficulty lies in the
situation where the system Jacobian at a fixed point has com-
plex eigenvalues or multiple unstable eigenvalues. Due to
this fact, Yu et al.2 extended the OGY chaos control to be
useful for controlling higher order chaotic systems,4 espe-
cially in the case where some of the eigenvalues of the sys-
tem Jacobian are complex conjugates. The method relies on
the identification of suitable invariant manifolds using a lo-
cally linear model and it was shown that the resulting dy-
namics is asymptotically stable.

Moreover, a number of chaos control strategies have
been proposed, which are based on feedback control
system5–8 as well as SMC.9–12 However, these methods are
applicable for a specific chaotic system and, in contrast to the
OGY control, require the full knowledge on system dynam-
ics. Moreover, these methods only guarantee the asymptotic
stability.6–11 Asymptotic stability implies that the system tra-
jectories converge to the equilibrium as time goes to infinity.

Traditionally, the goal of chaos control has been to sta-
bilize one of the UPOs.4 However, for some applications, it
is desirable to set the system to behave in a chaotic manner,
to convert a stable equilibrium point, periodic orbit, or an
unwanted chaotic behavior to a desired chaotic motion with
prescribed properties. For example, there is abundant evi-
dence that supports the existence of chaos at all levels from
the simplest to the most complex forms of organization of
the nervous system.13,14 The nonlinear dynamics analysis ofa�Electronic mail: erfanian@iust.ac.ir.
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human electroencephalogram �EEG� has shown the existence
of chaotic attractor15–18 and changes in the attractor dimen-
sion during sleep stages and diseases.19–21 There is a growing
agreement that some diseases such as epileptic seizure and
depression are related to a loss of the complexity of brain
signals.22,23 It is commonly believed that seizure episodes are
characterized by bifurcations to system states of low
complexity.23,24 Therefore, one can imagine the treatment of
biological disorders by converting an unwanted chaotic dy-
namics to a desired chaotic motion �i.e., controlling the
complexity�.

The aim of this work is to develop a chaos control strat-
egy that does not require the equations of motion to be
known, to be general so that it can be applied to any chaotic
systems, to be robust against external disturbances and noise,
and to be applicable in real-time applications. Another im-
portant issue in designing a chaos control strategy for prac-
tical applications is the existence of various types of uncer-
tainties �e.g., system uncertainty, unmodeled dynamics, and
unknown exogenous disturbances�. The dynamics of a cha-
otic plant are highly time varying and nonlinear. A useful and
powerful control scheme to deal with the uncertainties, non-
linearities, and external disturbances is the SMC.25 Neverthe-
less, the SMC suffers from the high-frequency oscillations in
the control input, which is called “chattering.”26 Chattering is
undesirable because it can excite unmodeled and high-
frequency plant dynamics. A simple method for alleviation of
chattering is using a suitable boundary layer around the slid-
ing surface, in which the switching function is approximated
by a linear feedback gain when the state trajectory lies within
the boundary layer.25–27 Within the boundary layer, the sys-
tem no longer behaves as dictated by SMC. By introducing
boundary layer, chattering can be reduced, but tracking per-
formance and robustness are compromised.

In order to limit the chattering phenomena and to pre-
serve the main advantages of the original SMC, we propose
a control strategy, which is based on SMC, and adaptive
control, referred to as ARC, for controlling the chaos
dynamics.

One way to control chaos is to make parameter pertur-
bations to an accessible system parameter.1 However, when
the system parameters are not accessible or cannot be
changed easily, these methods cannot be used. To solve this
problem, some researchers introduced an additive input to
the chaotic systems.28,29 Controlling the complexity using
additive inputs may need to control the entire set of state
variables. In this case, we will encounter the control of a
multi-input multi-output �MIMO� nonlinear dynamical sys-
tem. The controller complexity of a MIMO system can be
considerably reduced if decentralized control schemes are
used. The decentralized control problem is to design a set of
independent controllers in which each subsystem is con-
trolled by a stand-alone controller.30 Each controller, devel-
oped based only on local information and measurements, op-
erates solely on its associated subsystem. The interaction
between the subsystems is taken as external disturbances for
each isolated subsystem.

In this work, we present a general decentralized ARC
strategy, which is based on ARC for online controlling the
complexity of the chaotic systems.

II. BRIEF INTRODUCTION OF SLIDING MODE
CONTROL

Consider the following nonlinear system:

ẍ = f�x,t� + g�x,t� · u�t� + d�t� , �1�

where x�t� is the state to be controlled so that it follows a
desired trajectory xd�t�, d�t� is the external disturbances,
which is unknown but bounded by the known function, i.e.,
�d�t���D, and u�t� is the control input. The nonlinear dy-
namics f�x , t� and control gain g�x , t� are not known exactly

but are estimated as the known nominal dynamics f̂�x , t� and
ĝ�x , t�, respectively, with the bounded estimation errors.
With uncertainties, the dynamic equation of the system �1�
can be modified as

ẍ = �f�x,t� + �f�x,t�� + �g�x,t� + �g�x,t�� · u�t� + d�t�

= f�x,t� + g�x,t� · u�t� + w�x,t� , �2�

where �f�x , t� and �g�x , t� denote unmodeled dynamics and
parameter uncertainties; w�x , t� is the lumped uncertainty
and defined as

w�x,t� = �f�x,t� + �g�x,t�u�t� + d�t� . �3�

Here the bound of the lumped uncertainty is assumed to be
given; that is,

�w�x,t�� � � . �4�

The objective of the controller is to design a control law to
force the system state vector to track a desired state vector in
the presence of model uncertainties and external distur-
bances. We first define a sliding surface as follows:

s�e,t� = � d

dt
+ ��2��

0

t

edr� = 0, �5�

where e�t� is the state error and � is a positive constant. By
solving the above equation for the control input using Eq.
�1�, we obtain the following expression for u�t�, which is
called equivalent control ueq:

ueq�t� =
1

ĝ�x,t�
· �− f̂�x� + ẍd�t� − 2�ė�t� − �2e�t��

=
1

ĝ�x,t�
· û�t� . �6�

The equivalent control keeps the system states in the sliding
surface s=0 if the dynamics were exactly known. Hence, if
the state is outside the sliding surface, to drive the state to the
sliding surface, we choose the control law such that

1

2

d

dt
s2 � − ��s� , �7�

where � is a strictly positive constant and Eq. �7� is called a
reaching condition. The control objective is to guarantee that
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the state trajectory can converge to the sliding surface. It can
be proved that the control law

u1�t� =
1

ĝ�x,t�
· �û�t� − k · sgn�s�� �8�

with k��+� satisfies the sliding condition �7�.25

This control law leads to high-frequency control switch-
ing and chattering across sliding surface. The value of
switching gain k depends on the bounds of system uncertain-
ties. This would require the knowledge on the uncertainty
bounds, which are normally difficult to estimate. A large
value has to be applied to the control gain when the bound-
ary is unknown. The larger the system uncertainties, the
larger the required switching gain to compensate for the ef-
fects of uncertainties. Unfortunately, this large control gain
may cause chattering on the sliding surface and therefore
deteriorate the system performance. The chattering caused by
high-frequency switching control activity is highly undesir-
able and is not acceptable for control of functional electrical
stimulation and may excite unmodeled high-frequency plant
dynamics which could result in unpredictable instability. To
overcome this problem, the SMC strategy deserves special
attention because this method provides a systematic ap-
proach to maintain asymptotic stability and consistent perfor-
mance.

A simple method for alleviation of chattering is using a
suitable boundary layer around the sliding surface, in which
the switching function is approximated by a linear feedback
gain when the state trajectory lies within the boundary
layer.25–27 Within the boundary layer, the system no longer
behaves as dictated by SMC. By introducing boundary layer,
chattering can be reduced, but tracking performance and ro-
bustness are compromised.

III. DESIGN OF ADAPTIVE ROBUST CONTROLLER

A. Structure of the ARC

Although SMC has long being known for its capabilities
in achieving robust control, however, it also suffers from
large control chattering that may excite the unmodeled high-
frequency response of the systems due to the discontinuous
switching and imperfect implementations. One commonly
used method to eliminate the effects of chattering is to re-
place the switching control law by a saturating approxima-
tion within a boundary layer around the sliding surface.25

Inside the boundary layer, the discontinuous switching func-
tion is approximated by a continuous function to avoid dis-
continuity of the control signals. Even though the boundary
layer design can alleviate the chattering phenomenon, these
approaches, however, provide no guarantee of convergence
to the sliding mode and involve a tradeoff between chattering
and robustness and result in the existence of the steady-state
error.31 In order to limit the chattering phenomena and to
preserve the main advantages of the original SMC, we pro-
pose a new SMC by combining an adaptive nonlinear com-
pensator with SMC. The configuration of the proposed con-
trol strategy is schematically depicted in Fig. 1, where u1 is

the SMC input defined in Eq. �8� and u2 is the output of
compensator as the auxiliary control input. Controller output
is a function of u1 and u2 defined by

u = 	u1 if �s�e�� � 	 ,


�e�u1 + �1 − 
�e��u2 if �s�e�� � 	 ,

 �9�

where s�e� is a scalar function described in Eq. �2�, 	 is the
boundary layer thicknesses, and 
�e� is a function of error
and is adapted by


�e� =
�s�e��

	
. �10�

The original SMC structure is retained in the proposed
scheme, but the role of adaptive nonlinear compensator be-
comes more significant as the state trajectory is nearing the
sliding surface.

B. Adaptive nonlinear compensator

In order to guarantee the closed-loop stability and mini-
mize the tracking error inside the boundary layer, an adaptive
nonlinear compensator is proposed, in which its output is
aggregated with the output of SMC when the state trajectory
of the system enters in some boundary layer around the slid-
ing surface, i.e.,

� = � d

dt
+ 1�2��

0

t

edr� ,

�11�

u2 = ��e, ė,� e · dt� =  · tanh�� · �� − ��� ,

where e is the state error. The parameters �= � ,� ,�� are
adapted online such that the system output x can asymptoti-
cally track the desired output xd. For online adaptation of the
parameters �= � ,� ,��, the following Lyapunov function V
is defined:

V = 1
2 · �x − xd�2 = 1

2 · e2. �12�

Based on the Lyapunov theorem, the reaching condition is

V · V̇�0. If a control input u2 can be chosen to satisfy this
reaching condition, the control system will converge to the
origin of the phase plane. By using the following adaptation
rule, it was proved that the output tracking error asymptoti-
cally converges to zero,32

Fuzzy-Based SMC

Adaptive Nonlinear
Controller

PLANT-
θrθ e

Decision Rule

1u

u

2u

FIG. 1. Configuration of ARC.
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�̇ = − � · e ·
�u2

��
· sgn� �x

�u
� , �13�

where ��0 is the learning rate parameter and sgn� · � is a
sign function.

C. Fuzzy-based SMC

To implement the SMC, the nonlinear function f�x� and
the control gain g�x� in Eq. �1� should be estimated. In this
work, we use the fuzzy logic system �FLS� to approximate
the nonlinear function f�x�. An interesting and tempting au-
thority of fuzzy logic systems is their capability in approxi-
mation of variety types of nonlinear functions. It is proved
that certain classes of fuzzy logic systems have universal
approximation ability.33 The fuzzy system uses the fuzzy if-
then rules to perform a mapping from an input vector x
= �x1 ,x2 , . . . ,xn�T�Rn to an output O�x��R. The rth fuzzy
rule is written as

Rr:if x1 is A1
r�x1� and xn is An

r�xn�, then y is Br,

where Ai
r and Bi

r are fuzzy sets with membership functions
�Ai

r�xi� and �Bi�y�, respectively, and x belongs to a compact
set. By using the product-inference rule, singleton fuzzifier,
and center-average defuzzifier, the output of FLS can be ex-
pressed as

O�x� =
�i=1

nr ỹi�� j=1
n �Aj

i�xj��
�i=1

nr �� j=1
n �Aj

i�xj��
= �T��x� , �14�

where nr is the number of total fuzzy rules, ỹi is the fuzzy
singleton for the output in the ith rule, �Aj

i�xj� is the mem-
bership function of the fuzzy variable xj characterized by
Gaussian function, �= �ỹ1 , ỹ2 , . . . , ỹnr�T is an adjustable pa-
rameter vector, and �= ��1 ,�2 , . . . ,�nr�T is a fuzzy basis vec-
tor, where �i is defined as

�i�x� =
�� j=1

n �Aj
i�xj��

�i=1
nr �� j=1

n �Aj
i�xj��

. �15�

To approximate the nonlinear function estimate f�x� in Eq.
�1� using FLS approximator in Eq. �14� and estimate the
control gain g�x�=g, adaptive update laws to adjust the pa-
rameter vectors � and g need to be developed. In this work,
we use the standard recursive least-squares �RLS� algorithm
to estimate the parameters.

D. Decentralized ARC

To implement the ARC, the dynamics of the system are
presented in a standard canonical form as

x1
�n� = f1�x1,x2, . . . ,xn� + g1�x1,x2, . . . ,xn�u1�t� + w1�t� ,

x2
�n� = f2�x1,x2, . . . ,xn� + g2�x1,x2, . . . ,xn�u2�t� + w2�t� ,

�16�
]

xn
�n� = fn�x1,x2, . . . ,xn� + gn�x1,x2, . . . ,xn�un�t� + wn�t� ,

where ui�t� is the additive input to the system and wn repre-
sents the system parameter uncertainty, unmodeled dynam-
ics, and external disturbances. Instead of designing a MIMO
controller, we design a set of independent controllers. Each
state variable has its own controller.

Fuzzy modeling approach was used to approximate the
nonlinear functions f i�x1 , . . . ,xn�. Offline identification of the
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FIG. 2. Controlling the chaotic motion of Duffing’s equation to a period-two
orbit, period two to a chaotic motion, and chaotic to a period one using �a�
conventional SMC �k=5,	=10,�=3� and �b� proposed ARC �k=5,	
=10,�=180,�=0.001� under the external noise disturbances and time-
varying bifurcation parameter. The actual �solid� and desired �dotted� trajec-
tories are shown in top plots of �a� and �b�.

033111-4 H.-R. Kobravi and A. Erfanian Chaos 19, 033111 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



fuzzy models f i�x1 , . . . ,xn� is performed by RLS algorithm
using the measured values of the state variables without ex-
ogenous inputs and external disturbances.

IV. SIMULATION STUDIES

In this section, we report the simulation results for three
representative examples: the second-order nonautonomous
Duffing’s equation, the third-order continuous-time Lorenz
system, and the Rössler system. These are used to verify and
demonstrate the effectiveness of the proposed chaos control
method.

A. Duffing’s equation

Consider the Duffing’s equation5

ẍ + � · ẋ + � · x − x3 = � cos��t� . �17�

The system exhibits very interesting dynamics ranging from
periodic to chaotic by using � as the bifurcation parameter.
The solution trajectory of equation is chaotic with �=1.800
and 2.100, period two with �=1.489, and periodic one with
�=7.000 when �=0.4, �=−1.1, and �=1.8.

To implement the ARC, the Duffing’s equation is pre-
sented in a standard canonical form as

ẍ = f�x, ẋ� + u�t� , �18�

where u�t� is the additive input to the chaotic system deter-
mined by the controller �2�. The nonlinear function f�x , ẋ� is
approximated by using a fuzzy logic system described in
Sec. III with no additive input. The results of simulation
using conventional SMC and proposed method are shown in
Fig. 2. The controller was activated at 30 s to convert the
chaotic motion with �=1.800 to period two starting at 30 s,
to chaotic motion with parameter �=2.100 starting at 60 s,
and to period one at 90 s. It is clearly observed that the high
control activity and chattering are due to traditional SMC
�Fig. 2�a��. Moreover, the poor tracking performance is evi-
dent. In contrast, an accurate and robust tracking response
was achieved to the desired motions. Note that the nonlinear
function f�x , ẋ� was identified offline using the chaotic data
obtained with parameter �=1.800 and used for all stages of
control. Interesting observation is the fast convergence at the
instance of changing the desired motion.

To evaluate the performance of controller under time-
varying parameter, the bifurcation parameter was changed as
the following form:
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FIG. 3. Converting the chaotic motion of Lorenz dynamics to a desired periodic orbit with additive noise to the state variables of the system using the
proposed SMC �k=5,	=10,�=180,�=0.001�.
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��t� = 1.800 + 0.5 sin�0.5t� . �19�

Moreover, to demonstrate the ability of the proposed control
strategy to external noise rejection, an external input with
Gaussian distribution �mean 0 and standard deviation 8� was
added to the chaotic system. Figure 2�b� shows that an ex-
cellent tracking performance can be also achieved under the
external noise disturbances and time-varying parameter us-
ing the previous identified nonlinear function f�x , ẋ�. Un-
wanted behavior is perfectly converted to the desired mo-
tions �i.e., period one, period two, and chaotic� using the
proposed control strategy.

B. Lorenz system

The Lorenz system is described by34

ẋ = ��y − x�, ẏ = �x − y − xz, ż = − �z + xy , �20�

where �=10, �=8 /3, and �=28.
For each state variable, an ARC is designed separately.

To implement the ARC, the Lorenz system is presented in
the standard canonical form as follows:

ẋ = f1�x,y,z� + u1�t�, ẏ = f2�x,y,z� + u2�t� ,

�21�
ż = f3�x,y,z� + u3�t� ,

where u1�t�, u2�t�, and u3�t� are the controllers. The nonlinear
functions f�x ,y ,z� were identified using the data obtained
with parameters �=10, �=8 /3, and �=28 without additive
inputs. Figure 3 shows the results of controlling the Lorenz
dynamics with parameters �=10, �=8 /3, and �=28. The
controller is switched on at 5 s to convert the chaotic motion
to a desired period orbit of the given system. Moreover, a
disturbance with Gaussian distribution �mean 0 and standard
deviation 8� was added to the chaotic system as follows:

ẋ = ��y − x� + v1, ẏ = �x − y − xz + v2,

�22�
ż = − �z + xy + v3.

It is observed that the controller is able to convert the chaotic
motion to the periodic orbit even in the presence of external
noise disturbance.

Figure 4 shows the result of a typical chaos-to-chaos
control. The controller was switched on at 15 s to convert the
Lorenz dynamics to a different chaotic motion, i.e., the
Rössler system,35 as follows:
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FIG. 4. Converting the chaotic motion of Lorenz dynamics to the Rössler system using the proposed SMC �k=5,	=10,�=180,�=0.001�.
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ẋ = − y − z, ẏ = x + a · y, ż = b + z · �x − c� .

The Rössler system is chaotic for a=0.2, b=0.2, and a=5.7.
From the simulation results, it can be seen that a perfect
tracking response can be obtained even under the changing
the structure of chaotic system.

V. CONCLUSIONS

In this paper, a robust control strategy incorporating the
SMC and adaptive control has been proposed for controlling
the chaotic dynamics. The controller is constructed such that
the tracking error exponentially converges to a small region
around zero. Simulation studies on the second-order nonau-
tonomous Duffing’s equation and the third-order continuous-
time Lorenz system demonstrated the exceptional perfor-
mance and robustness of the control system against external
noise disturbances and system parameter variations during
converting the chaotic motion to a periodic orbit and chaos-
to-chaos control. An important observation is the fast con-
vergence of the control system. The conversion of unwanted
trajectory to the desired motions is very fast. The method
does not require any knowledge about the equation of system
dynamics. To design the controller, a model of chaotic sys-
tem should be first identified. However, the model does not
require to be accurate.
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