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Abstract
A decentralized control methodology is designed for the control of ankle dorsiflexion and
plantarflexion in paraplegic subjects with electrical stimulation of tibialis anterior and calf
muscles. Each muscle joint is considered as a subsystem and individual controllers are
designed for each subsystem. Each controller operates solely on its associated subsystem, with
no exchange of information between the subsystems. The interactions between the subsystems
are taken as external disturbances for each isolated subsystem. In order to achieve robustness
with respect to external disturbances, unmodeled dynamics, model uncertainty and
time-varying properties of muscle-joint dynamics, a robust control framework is proposed
which is based on the synergistic combination of an adaptive nonlinear compensator with a
sliding mode control and is referred to as an adaptive robust control. Extensive simulations
and experiments on healthy and paraplegic subjects were performed to demonstrate the
robustness against the time-varying properties of muscle-joint dynamics, day-to-day
variations, subject-to-subject variations, fast convergence, stability and tracking accuracy of
the proposed method. The results indicate that the decentralized robust control provides
excellent tracking control for different reference trajectories and can generate control signals
to compensate the muscle fatigue and reject the external disturbance. Moreover, the controller
is able to automatically regulate the interaction between agonist and antagonist muscles under
different conditions of operating without any preprogrammed antagonist activities.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the past three decades, many research groups have shown
that limited restoration of function to paralyzed limbs can
be achieved through functional neuromuscular stimulation
(FNS). This technology has been used to restore hand grasp
and elbow extension in individuals with tetraplegia [1–3], to
provide standing and locomotion for paraplegic subjects [4, 5]
and to correct drop foot in subjects with an upper motor neuron

lesion (due to stroke, incomplete spinal cord injury, multiple
sclerosis, cerebral palsy and head injury) [6]. In FNS systems,
sequences of current pulses excite the intact peripheral axons,
which in turn contract paralyzed muscles. By changing the
pulse width, pulse amplitude or pulse frequency, the level
of contraction can be altered to perform a specific task. To
provide functional use of the paralyzed limbs, an appropriate
electrical stimulation pattern should be delivered to a set of
muscles.

1741-2560/09/046007+10$30.00 1 © 2009 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1741-2560/6/4/046007
mailto:erfanian@iust.ac.ir
http://stacks.iop.org/JNE/6/046007


J. Neural Eng. 6 (2009) 046007 H-R Kobravi and A Erfanian

A major impediment to stimulating the paralyzed
neuromuscular systems and determining the stimulation
pattern has been the highly nonlinear, time-varying properties
of electrically stimulated muscle, muscle fatigue, spasticity
and day-to-day variations which limit the utility of a pre-
specified stimulation pattern and an open-loop FNS control
system. To deal with these problems, many control strategies
have been developed and reported in the literature including a
fixed-parameter feedback controller [7, 8], adaptive feedback
techniques [9–12], fixed-parameter feedforward [13, 14],
adaptive feedforward [14–19] and combination of feedforward
and feedback control techniques [13–15, 20].

All these works indicate that tracking quality was
improved by the use of the adaptive control law compared
to the non-adaptive one. An adaptive control, by online
tuning the parameters (of either the plant or the controller—
corresponding to the indirect, or direct adaptive control),
can deal with uncertainties, but generally, suffers from the
disadvantage of being able to achieve only asymptotical
convergence of the tracking error to zero. The basic idea in
adaptive control is to estimate the uncertain plant parameters
(or, equivalently, the corresponding controller parameters)
online based on the measured systems signal, and use
the estimated parameters in the control input computation.
Generally, this algorithm is based on the assumption that the
structure of the system model is known with unknown system
slow-varying parameters and the parameters appear linear.
Several issues, such as transient performance, unmodeled
dynamics, disturbance, the amount of offline training, the
tradeoff between the persistent excitation of signals for correct
identification and the steady system response for control
performance, the model convergence and system stability
issues in real applications and nonlinearity in parameters, often
complicate the adaptive approach [21–23].

A useful and powerful control scheme to deal with
the uncertainties, nonlinearities and bounded external
disturbances is sliding mode control (SMC) [24]. In robust
control designs, a fixed control law based on a priori
information on the uncertainties is designed to compensate for
their effects, and exponential convergence of the tracking error
to a (small) ball centered at the origin is obtained. The robust
control has some advantages over the adaptive control, such
as its ability to deal with disturbances and quickly varying
parameters [24]. Nevertheless, the SMC suffers from high-
frequency oscillations in the control input, which is called
‘chattering’ [25, 26]. Chattering is undesirable because it can
excite unmodeled high-frequency plant dynamics.

The SMC has already been used for the control of FES
[27, 28] in human subjects. Jezernik et al [27] reported the
use of a sliding mode closed-loop controller for the control
of knee-joint angle by stimulating the quadriceps muscle.
To reduce the chattering, they replaced the discontinuous
term by a continuous one in the sliding control law. In
this case, the controller cannot force the system into a
sliding-mode regime and does not ensure robustness and
good tracking performance [29]. In previous work [28],
we designed a control methodology which is based on the
synergistic combination of artificial neural networks with

SMC. A recurrent neural network was used to model the
uncertainties and to provide an auxiliary equivalent control to
keep the uncertainties to low values and consequently to use
a SMC with lower switching gain. The method was designed
for the control of knee-joint angle using single muscle group
(i.e. quadriceps muscle) stimulation. However, extension of
the work to multiple muscle systems (e.g. simultaneous co-
activation of agonist and antagonist muscles) remains an open
problem. Moreover, initial evaluation of the conventional
SMC for the control of human gait [30] and high-order sliding
modes (HOSMs) for the control of multiple muscle systems
in a single joint [31] were performed in a simulation-based
study. Although the chattering can be removed by properly
using HOSMs, the main problem in the implementation of
HOSMs is increasing information demand. The parameters of
the HOSM controller should satisfy certain conditions in order
to guarantee the finite-time convergence. These conditions
highly depend on the information about the system which is
not easily available. Another drawback of HOSMs is revealed
when the relative degree r of the measurable sliding variable
s is higher than 1, as they generally require knowledge of its
derivatives up to the (r−1)th order. Unfortunately, the problem
of successive real-time exact differentiation is considered to
be practically unsolvable and derivatives must be estimated by
means of some observers (e.g. ‘high-gain’ observer or sliding
differentiator) [32].

In order to limit the chattering phenomena and to preserve
the main advantages of the original SMC, we propose a new
control strategy which is based on SMC, fuzzy logic systems
and adaptive control, referred to as adaptive robust control
(ARC), for controlling the ankle movement in paraplegic
subjects using agonist–antagonist co-activation.

Another important issue in the design of FNS control
systems is that a large number of muscles need to be
stimulated to coordinate several degrees of freedom of
movements. The controller has to cope with a significant
coupling existing among individual joints. The controller must
also intelligently assign activations to agonist and antagonist
muscles with the goal of achieving the beneficial effects of
co-contraction during normally occurring movement [33, 34].
Centralized controller design of such a system requires a
complex mathematical model of musculoskeletal dynamics
in the control law formulation [35–38]. This approach
is computationally intensive and the performance of the
control system is ultimately governed by the fidelity of the
mathematical model used to describe the musculoskeletal
dynamics. Controller complexity can be considerably reduced
if decentralized control schemes are used. The decentralized
control problem is to design a set of independent controllers
in which each subsystem is controlled by a stand-alone
controller [39]. Each controller, developed based only on
local information and measurements, operates solely on its
associated subsystem. The interaction between the subsystems
is taken as external disturbances for each isolated subsystem.

In this work, we present a new decentralized control
strategy which is based on ARC for the control of ankle
movement while the agonist (antagonist) muscle joint is
considered as a subsystem.
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Figure 1. Structure of the proposed adaptive robust control.

2. Methods

2.1. Structure of an ARC

Although sliding mode control (see the appendix for details)
has long being known for its capabilities in achieving robust
control; it also suffers from large control chattering that
may excite the unmodeled high-frequency response of the
systems due to the discontinuous switching and imperfect
implementations. One commonly used method to eliminate
the effects of chattering is to replace the switching control
law by a saturating approximation [24] within a boundary
layer around the sliding surface. Inside the boundary layer,
the discontinuous switching function is approximated by a
continuous function to avoid discontinuity of the control
signals. Even though the boundary layer design can alleviate
the chattering phenomenon, these approaches, however,
provide no guarantee of convergence to the sliding mode [29]
and involve a tradeoff between chattering and robustness, and
result in the existence of the steady-state error. In order
to limit the chattering phenomena and to preserve the main
advantages of the original SMC, we propose a new SMC
by combining an adaptive nonlinear compensator with the
SMC. The configuration of the proposed control strategy is
schematically depicted in figure 1, where u1 is the output of
the SMC defined in [(A.8)], u2 is the output of an adaptive
nonlinear compensator as the auxiliary control input (defined
in section 2.1) and u = d(u1, u2) is a function of u1 and u2

defined by

u = d(u1, u2)

=
{
u1 if |s(e)| > φ

α(e)u1 + (1 − α(e))u2 if |s(e)| � φ,
(1)

where s(e) is a scalar function described in [(A.5)], φ is the
boundary layer thicknesses and α(e) is a function of error and
is adapted by

α(e) = |s(e)|
φ

. (2)

The original SMC structure is retained in the proposed scheme,
but the role of adaptive nonlinear compensator becomes more
significant as the state trajectory is nearing the sliding surface.

2.2. Adaptive nonlinear compensator (ANC)

In order to guarantee the closed-loop stability and minimize the
tracking error inside the boundary layer, an adaptive nonlinear
compensator is proposed whose output is combined with the

output of the SMC when the state trajectory of a system enters
some boundary layer around the sliding surface, i.e.

κ =
(

d

dt
+ 1

)2(∫ t

0
e dr

)
(3)

u2 = f

(
e, ė,

∫
e · dt

)
= α · tan h(β · (κ − γ )),

where e is the state error. The parameters ρ = (α, β, γ )

are adapted online during the online control without offline
training such that the system output θ can asymptotically
track the desired output θd. In order to derive an adaptation
mechanism that would guarantee the global asymptotic
stability of the control system, we choose the Lyapunov
function candidate

V = 1
2 · (θ − θd)

2 = 1
2 · e2. (4)

Based on the Lyapunov theorem, if a control input u2 can
be chosen to satisfy V̇ � 0, then the function V will be
monotonically decreasing for time t � 0. By using the
following adaptation rule, it was proved that the output
tracking error asymptotically converges to zero [40]:

ρ̇ = −δ · e · ∂u2

∂ρ
· sgn

(
∂θ

∂u

)
, (5)

where δ > 0 is the learning rate parameter and sgn(·) is a sign
function.

2.3. Fuzzy-based SMC

To implement the SMC, the nonlinear function f (x) and the
control gain g(x) in [(A.1)] should be estimated. In this work,
we use a fuzzy logic system to approximate the nonlinear
function f (x). An interesting and tempting authority of fuzzy
logic systems is their capability for approximating various
types of nonlinear functions. It was proved that certain
classes of fuzzy logic system have universal approximation
ability [41]. The fuzzy system uses the fuzzy IF–THEN
rules to perform a mapping from an input vector x =
[x1, x2, . . . , xn]T ∈ �n to an output f̂ (x) ∈ �. The rth fuzzy
rule is written as

Rr : if x1 is Ar
1(x1) and . . . and xn is Ar

n(xn), then y is Br,

where Ar
i and Br

i are the fuzzy sets with the membership
functions μAr

i
(xi) and μBi (y), respectively, and x belongs to

a compact set. By using the product–inference rule, singleton
fuzzifier and center-average defuzzifier, the output of FLS can
be expressed as

f̂ (x) =
∑nr

i=1 ỹi
(∏n

j=1 μAi
j
(xj )

)
∑nr

i=1

(∏n
j=1 μAi

j
(xj )

) = ϑT ψ(x), (6)

where nr is the number of total fuzzy rules, ỹi is the
fuzzy singleton for the output in the ith rule, μAi

j
(xj ) is the

membership function of the fuzzy variable xj characterized by
the Gaussian function, ϑ = [ỹ1, ỹ2, . . . , ỹnr ]T is an adjustable
parameter vector and ψ = [ψ1, ψ2, . . . , ψnr ]T is a fuzzy basis
vector, where ψi is defined as

ψi(x) =
(∏n

j=1 μAi
j
(xj )

)
∑nr

i=1

(∏n
j=1 μAi

j
(xj )

) . (7)

In this work, we use the standard recursive least-squares (RLS)
algorithm to estimate the parameters ϑ and g.

3



J. Neural Eng. 6 (2009) 046007 H-R Kobravi and A Erfanian

Flexor

Extensor

Ankle Joint

Controller 1
(ARC)

Controller 2
(ARC)

θ

-

-
fe

ee eu

fu

eτ

fτ
dθ

Figure 2. Decentralized adaptive robust control system of ankle
movement.

2.4. Decentralized control of ankle movement using
agonist–antagonist co-activation

A representative diagram of the proposed control system of
ankle movement is shown in figure 2. Each muscle joint
has its own controller developed in sections 2.1 and 2.2.
To implement ARC, the musculoskeletal system should be
presented in a standard canonical form as

θ̈ = ff (θ, θ̇ ) + gf · uf (t) + wf (t) (8)

θ̈ = fe(θ, θ̇ ) + ge · ue(t) + we(t), (9)

where (8) and (9) present muscle-joint dynamics for
dorsiflexion and plantarflexion movements, respectively. The
parameter θ denotes the ankle angle, θ and θ̇ are the
system states and uf and ue are the input commands to
the dorsiflexor and plantarflexor muscles, respectively. wf

and we represent dynamic coupling, parameter uncertainty,
unmodeled dynamics, gravity loading of the musculoskeletal
system and external disturbances for the dorsiflexion and
plantarflexion, respectively. The error signals used for
controllers of two muscles are calculated as[

ee

ef

]
=

[
+1
−1

]
[θ − θd ] (10)

where ef and ee are the error signals for controllers of the flexor
and extensor, respectively; θ is the measured joint angle, and
θd is the desired trajectory.

The fuzzy modeling approach is used to approximate
the nonlinear functions ff (θ, θ̇ ) and fe(θ, θ̇). Offline
identification of the fuzzy models, gf and ge parameters,
are performed by the RLS algorithm using a pulse-width-
modulation random sequence. To generate a random
stimulation signal, a random sequence of pulse widths with
a uniform distribution is passed through a Butterworth low-
pass digital filter with a cutoff frequency of ωc = 5 Hz.
During experimental evaluation, muscle-joint dynamics for
the dorsiflexion and plantarflexion were identified through two
separate experimental trials during the first experiment session
on a healthy subject and then used for subsequent experiments
on different days and all subjects.

3. Simulation studies

A musculoskeletal model which was presented in [15] is used
here as a virtual patient in simulation studies. The model
of electrically stimulated muscle used in this study includes

nonlinear recruitment, linear dynamics and multiplicative
nonlinear torque–angle and torque–velocity scaling factors.
The virtual patient consists of a single skeletal segment in a
swing pendulum configuration with one degree-of-freedom.
The skeletal segment is acted upon by an agonist–antagonist
pair of electrically stimulated muscles. The set of parameters
for muscle and skeletal models are taken from [15].

We use the root-mean-square (RMS) error and normalized
RMS (NRMS) as the performance indices for measuring the
tracking accuracy as follows:

RMS =
√√√√ 1

T

T∑
t=1

(θ(t) − θd(t))2 (11)

NRMS = 1

(θmax − θmin)

√√√√ 1

T

T∑
t=1

(θ(t) − θd(t))2 × 100.

(12)

The SMC parameters (i.e. k, φ and λ) are chosen heuristically
to achieve the best controller performance during simulation
studies. Of course, there are some guidelines for choosing
the SMC parameters [28]. The SMC would require using a
high switching gain, k, in order to compensate for the effects
of uncertainties. This would also lead to the use of a thicker
boundary layer in order to eliminate the higher chattering effect
resulting from the use of a high switching gain. Although the
chattering behavior can be reduced by increasing the boundary
layer thickness, the control system is actually changing to a
system without a sliding mode when a thick boundary layer
is used. According to these guidelines, the parameters of the
proposed SMC were selected as follows:

k = 50, φ = 5, λ = 3.

Figures 3(a)–(c) show the results of the conventional SMC
of the ankle joint angle in a virtual patient for different values
of a boundary layer width (i.e. φ) with k = 50 and λ = 3. It is
clearly observed the high control activity and the chattering due
to the SMC (figure 3(a), RMS error 5.4◦ (6.75%)). Increasing
the boundary layer thickness reduces chattering but increases
the tracking error (figure 3(b): RMS error 6.9◦ (8.63%),
figure 3(c): RMS error 10.0◦ (12.50%)).

The result of the ankle movement control using the
proposed ARC, with k = 50, φ = 5 and λ = 3, is shown
in figure 3(d) (RMS error 0.79◦ (0.99%)). It is observed
that the chattering of control signals produced by the SMC
is effectively eliminated even with a thinner boundary layer.
It is apparent that the proposed control strategy is able to
provide remarkably fast and robust tracking with a smooth
control action. The interesting observation is the presence of
antagonist co-activation during ankle movement. At the low
levels of activation, both muscles are engaged. The activity
of antagonist (agonist) decreases as agonist (antagonist)
activity increases. At the peak angles, there is no overlap
between the agonist and antagonist muscles. The agonist–
antagonist overlap is about 22.5%. It has already been
shown that through the use of electrical stimulation under
various nonisometric conditions, a moderate application of
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Figure 3. Simulation results of the ankle movement control
obtained by the conventional SMC (k = 50, λ = 3) with boundary
layer thicknesses φ = 0 (a), φ = 10 (b) and φ = 15 (c). Simulated
responses of the ARC (k = 50, λ = 3) with boundary layer thickness
φ = 5 (d). The controller forces the output of the plant to exactly
track the desired trajectory. The bottom plots in (a)–(d) show the
control outputs of agonist (solid) and antagonist (dotted).

antagonistic activity between 25% and 50% overlap does not
significantly deteriorate the range of motion, and it has the
potential to reduce the occurrence of long-term pathologic
joint laxity and, thereby, maintain joint stiffness at low force
ranges [33]. It is note worthy that co-activation activity
is automatically adjusted by the control strategy without
predefining a co-activation map.
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Figure 4. Simulation results of an external disturbance rejection
using the proposed SMC (k = 50, φ = 5, λ = 3). A constant torque
in amount of 1.25 Nm (which is approximately 50% of the
peak-to-peak generated torque during the disturbance-free trial) was
added to and subtracted from the net torque generated by the two
muscles for a duration of 30 s. The level of co-activation is 22.5%
during the disturbance-free trial, while it increases to 44.0% during
the positive disturbance and to 43.0% during the negative
disturbance. The bottom plot shows the control outputs of agonist
(solid) and antagonist (dotted).

3.1. Effects of external disturbances

To evaluate the ability of a proposed control strategy to external
disturbance rejection, a constant torque amount of 1.1 Nm
(which is approximately 50% of the peak-to-peak generated
torque during the disturbance-free trial) was added to and
subtracted from the net torque generated by the two muscles for
a duration of 20 s at 20 s and 55 s, respectively. Figure 4 shows
that excellent tracking performance and fast convergence
speed can be achieved under external disturbances using the
proposed SMC (RMS error 0.71◦ (0.89%)). It is interesting
to note that the level of co-activation increases as the level
of muscle activation increases. This may be explained by
what was recorded from normal human subjects [33, 34].
The co-activation strategies recorded from normal humans
show that as increased net joint torque is required, the
antagonist activity increases, albeit at a much lesser rate
than the agonist. The level of co-activation is 22.5% during
disturbance-free duration, while it increases to 44.0% during
positive disturbance and to 43.0% during negative.

3.2. Effects of muscle fatigue

In FNS applications, muscle fatigue can cause degradation of
system performance. To evaluate the ability of the controller
to account for muscle fatigue, the effects of muscle fatigue
were simulated by an asymptotic decrease in the agonist’s
(antagonist’s) input gain to 40% (42%) of its original value
over 180 s. Figure 5 demonstrates that the proposed SMC
can provide a very good tracking performance during muscle
fatigue (RMS error is 1.66◦ (3.32%) over 120 s). The controller
could adjust the stimulation pattern to achieve a consistent
tracking performance. The interesting observation is that by
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Figure 5. Simulation result of fatigue compensation obtained by the ARC (k = 50, φ = 5, λ = 3). The effects of muscle fatigue were
simulated by exponentially decreasing the muscle input gain during the course of the simulation. Muscle’s input gains have been reached to
40% and 42% of their initial value after 180 s for agonist and antagonist muscles, respectively.

increasing the agonist activity during fatigue, the antagonist
activity increases. The level of co-activation increases as the
muscles becomes fatigued.

4. Experimental evaluation

4.1. Experimental procedure

The experiments were conducted on three intact persons
and three thoracic-level complete spinal cord injury subjects
with injury at T7 and T12 levels using an eight-channel
computer-based closed-loop FNS system [42]. The paraplegic
subjects were active participants in a rehabilitation research
program involving daily electrically stimulated exercise
of their lower limbs (either seated or during standing
and walking) using ParaWalk neuroprosthesis [43]. All
experimental procedures were approved by the local ethics
committee and the subject gave informed consent. The
subject was seated on a bench with his hip flexed at
approximately 90◦ and the knee joint positioned at 0◦, while
the ankle was allowed to plantarflexing and dorsiflexing.
The tibialis anterior and calf muscles were stimulated
using adhesive surface elliptical electrodes (5 × 10 cm
GymnaUniphy electrodes, COMEPA Industries, Belgium).
Pulse width modulation (from 0 to 700 μs) with balanced
bipolar stimulation pulses, at a constant frequency (25 Hz)
and constant amplitude, was used. The controller adjusted the
pulse widths and pulse widths with a negative value were then
set to zero. An electrogoniometer (model SG150, Biometrics
Ltd, Gwent, UK) was fixed on the ankle joint to measure
the ankle-joint position. The measured signals were sampled
at 1 kHz by a 12 bit analog-to-digital converter (Advantech
PCI-1711 I/O card).

The computer-based closed-loop FNS system uses Matlab
Simulink (The Mathworks, R2007b), Real-Time Workshop
and Real-Time Windows Target under Windows 2000/XP
for online data acquisition, processing and controlling. The

proposed control strategy was implemented by the S-functions
using C++.

Three different types of desired movement trajectories
were used to evaluate the stability and tracking the
performance of the proposed strategy. The first pattern has
a biphasic trapezoidal stimulation intensity envelope with a
period of 20 s and a duty cycle of 60% (12 s on (movement
phase) and 6 s off (rest phase)). The second one is a biphasic
raised-cosine with a period of 12 s and a duty cycle of 50%
(6 s on (movement phase) and 6 s off (rest phase)). The third
stimulation pattern has a sine-wave envelope with a period of
20 s. The range of motion is between −10◦ and 32◦. During
each experiment day, five trials were conducted on each subject
and inter-trial resting intervals of at least 5 min were used. The
duration of each trial is 120 s for a normal test and 180 s for a
fatigue test.

The parameters of the controller during experimental
evaluation were set at the same values used during simulation.

4.2. Experimental results

Figure 6 shows typical results of identifying the muscle-
joint models (16) and (17) for dorsiflexion and plantarflexion
movements in an intact subject using the fuzzy logic
system. The values of the identified parameters were used
for subsequent experiments on different days for all intact
and paraplegic subjects. The able-bodied individuals were
instructed not to try to move their lower limbs during
experiments. Examples of joint angle trajectories obtained
with the proposed SMC on all subjects are shown in figure 7.
Excellent tracking performance with no chattering is achieved
using the proposed control strategy. The most interesting
observation is the fast convergence speed of the proposed
control strategy. The ankle movement trajectory converges
to the desired trajectory after about 2 s. It should be noted
that the values of the model parameters (16) and (17) for
all subjects and all experiment days are set the same values
which were determined during the first experiment day on one
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Figure 6. Measured (solid line) and predicted (dotted line) joint
angle obtained using identified ankle-joint dynamics in an intact
subject using random electrical stimulation (a) of plantarflexor (b)
and dorsiflexor (c) muscles.

Table 1. Summary of the average daily root-mean-square tracking
error (±standard deviation) obtained for healthy subjects using the
ARC.

Subject Day 1 Day 2 Day 3

KM 2.27◦ ± 0.30◦ 4.02◦ ± 0.20◦ 3.33◦ ± 0.27◦

NH 2.32◦ ± 0.34◦ 3.28◦ ± 0.60◦ 2.95◦ ± 0.93◦

AS 5.59◦ ± 0.25◦ 4.28◦ ± 0.52◦ 4.72◦ ± 1.53◦

Mean 3.20◦ ± 1.20◦

intact person and updating the parameters of adaptive nonlinear
compensator is performed online without any offline training.

A summary of results over 90 trials on all subjects over
three days (tables 1 and 2) indicates that the proposed control
strategy is able to achieve and maintain perfect tracking
performance by rapidly adapting the stimulation pattern. The
average RMS tracking error for a 42◦ range of movement
is 3.20◦ ± 1.20◦ for able-bodied, while it is 3.40◦ ± 0.26◦

for paraplegic subjects. The results demonstrate that the
proposed control strategy provides system dynamics with
an invariance property to model uncertainties and subject-
to-subject variations. Figure 7 shows that there is a low-
level co-activation at the low activation levels. The level
of agonist–antagonist co-activation tends to decrease as the
muscle activation increases.

4.2.1. Muscle fatigue compensation. Figure 8 shows the
ability of the ARC to compensate the muscle fatigue for
the biphasic raised-cosine and trapezoidal trajectories. The
average of the RMS error is about 3.6◦ for the raised-cosine
trajectory and 3.2◦ for the trapezoidal trajectory over 3 min.
The results show that the method could adjust the stimulation
pattern to compensate the muscle fatigue and the tracking
performance remains fairly constant throughout the trial. The
shift to higher stimulation levels over the course of session
indicates muscle fatigue. It is observed that the level of
co-contraction changes during different cycles of movement.
An interesting observation is the presence of symmetry in
a stimulation pattern of agonist and antagonist muscles.
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Figure 7. Typical results of controlling dorsiflexion and
plantarflexion movements on healthy subjects KM (a), NH (b) and
AS (c), and paraplegic subjects MH (d), and MS (e) using the ARC
(k = 50, φ = 5, λ = 3). The bottom plots in (a)–(e) show the
control signals of dorsiflexor (solid) and plantarflexor (dotted)
muscles.

Comparing the results obtained during prolonged stimulation
(figure 8) with that obtained during short stimulation
(figure 7), it is observed that the RMS tracking errors are
almost the same. This observation clearly demonstrates the
robustness of ARC against the time-varying property of the
muscle-joint dynamics.
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Figure 8. The ability of the proposed SMC (k = 50, φ = 5, λ = 3)
to compensate the muscle fatigue for two different desired
movement trajectories on paraplegic subject RR. The bottom plots
in (a), (b) show the control signals of dorsiflexor (solid) and
plantarflexor (dotted) muscles.

Table 2. Summary of the average daily root-mean-square tracking
error (±standard deviation) obtained for paraplegic subjects using
the ARC.

Subject Day 1 Day 2 Day 3

MS 3.81◦ ± 0.70◦ 4.46◦ ± 0.42◦ 4.90◦ ± 0.61◦

MH 5.31◦ ± 0.46◦ 5.17◦ ± 0.45◦ 5.48◦ ± 0.56◦

RR 3.20◦ ± 0.20◦ 3.40◦ ± 0.20◦ 3.50◦ ± 0.50◦

Mean 3.40◦ ± 0.20◦

4.2.2. Effects of external disturbances. Figure 9(a) shows a
typical result of an external disturbance rejection using ARC
in paraplegic subject MH. The disturbance was realized by
gently putting a load (1.0 kg) on the ankle at t = 79 s
and removing it at t = 141 s. It is observed that a perfect
disturbance rejection is obtained through the proposed SMC
(RMS error 5.5◦). Another typical result of a mechanical
disturbance to the musculoskeletal system for the sine-wave
trajectory in paraplegic subject MS is shown in figure 9(b)
(RMS error 7.04◦). The controller could adjust the stimulation
pattern such that a perfect disturbance rejection is achieved.
The interesting observation is the fast convergence speed of
the tracking trajectory at the time of applying the disturbance.
In these experiments, we also used the same values for the
model parameters which were determined during the first
day of experiment on one healthy subject and adapting the
parameters of nonlinear compensator was performed online
without any offline training.

5. Discussion and conclusion

In previous work [28], a robust control strategy was designed
which was based on the synergistic combination of artificial
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Figure 9. Effect of an external disturbance rejection using the
proposed SMC (k = 50, φ = 5, λ = 3) in paraplegic subjects MH
(a) and MS (b). The bottom plots in (a), (b) show the control signals
of dorsiflexor (solid) and plantarflexor (dotted) muscles.

neural networks with sliding mode control (SMC) for
controlling the knee-joint angle using quadriceps muscle
stimulation. To eliminate the chattering, we coupled two
neural networks with online learning without any offline
training into the SMC. Although the controller provides an
excellent tracking performance with no chattering for single
muscle group stimulation, the online computation burden to
update the parameters of neural networks is not appropriate for
multi-actuator and multi-joint movement. The work presented
in this paper is concerned with developing a new robust control
strategy resulting in a simpler design whereas the controller
performance is not obviously degraded. Unlike the previous
study, the method proposed in the current study is designed for
controlling the multiple muscle system, i.e. ankle dorsiflexion
and plantarflexion.

Extensive simulation studies on a virtual patient and
experiments on healthy and paraplegic subjects demonstrate
the exceptional performance and robustness of the proposed
control strategy during system parameter variations, muscle
fatigue and external disturbances. The results clearly indicate
that the proposed SMC makes system motion robust with
respect to the time-varying properties of musculoskeletal
dynamics, day-to-day and subject-to-subject variations. This
result is achieved without using any subject-specific model
information. The control system does not require any re-
identification of the plant model during different experiment
sessions and even for applying the controller on a new subject.
The parameters of the model were identified using the data
obtained during the first experiment session of one healthy
subject. Then, the values of identified parameters are used
for subsequent experiment sessions on different days for
all subjects. The adaptation of the adaptive compensator
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was performed online during online control without offline
training.

The results show that the average NRMS tracking error is
7.8% (RMS error 3.3◦) over all subjects while Jezernik et al
[27] who used a sliding mode control for controlling the knee-
joint angle by stimulating the quadriceps muscle reported an
average tracking error of 23.8%.

Another important feature of the proposed method is
that the state trajectories can be controlled to achieve fast
convergence. The ankle movement trajectory converges to
the desired trajectory after about 2 s. This observation is the
direct consequence of the exponential convergence rate of the
tracking error in the SMC. In contrast, an adaptive control
is able to achieve only asymptotic convergence. Asymptotic
stability implies that the system trajectories converge to the
equilibrium as time goes to infinity. For example, Abbas
et al [17] who used an adaptive feedforward controller for
controlling the knee-joint angle by stimulating the quadriceps
muscle group reported that the tracking error for the first few
cycles was very large and reduced to within 10% after an
average of 30 cycles (75 s). In [14], the results of an adaptive
control of single-joint movement by stimulating the quadriceps
muscle showed that the controller took more than 20 s to
converge.

One striking feature of the proposed control system is
the ability to control the interaction between agonist and
antagonist muscles without preprogramming the concurrent
agonist–antagonist activities. The results show that there is a
low-level co-activation at the low force levels. Furthermore,
the simulation studies show that the level of agonist–antagonist
co-activation increases during the fatiguing state and loaded
condition.

In this work, we proposed a robust method for the control
of agonist and antagonist activities in the ankle. Future work
will focus on exploitation of this strategy for the control of
unsupported standing in paraplegia using FES.

Appendix

Brief introduction to sliding mode control (SMC)

Consider the following nonlinear system

ẍ = f (x, t) + g(x, t) · u(t) + d(t) (A.1)

where x(t) is the state to be controlled so that it follows
a desired trajectory xd(t), d(t) is the external disturbances
which are unknown but bounded by the known function, i.e.
|d(t)| � D and u(t) is the control input. The nonlinear
dynamics f (x, t) and the control gain g(x, t) are not known
exactly, but are estimated as the known nominal dynamics
f̂ (x, t) and ĝ(x, t), respectively, with the bounded estimation
errors. With uncertainties, the dynamic equation of the system
(A.1) can be modified as

ẍ = (f (x, t) + �f (x, t)) + (g(x, t) + �g(x, t)) · u(t) + d(t)

= f (x, t) + g(x, t) · u(t) + w(x, t) (A.2)

where �f (x, t) and �g(x, t) denote unmodeled dynamics and
parameter uncertainties; w(x, t) is the lumped uncertainty and
defined as

w(x, t) = �f (x, t) + �g(x, t) · u(t) + d(t). (A.3)

Here the bound of the lumped uncertainty is assumed to be
given, that is

|w(x, t)| < v. (A.4)

The objective of the controller is to design a control law to
force the system state vector to track a desired state vector in
the presence of model uncertainties and external disturbances.
We first define a sliding surface as follows:

s(e, t) =
(

d

dt
+ λ

)2(∫ t

0
e(r) dr

)
= 0 (A.5)

where e(t) is the state error and λ is a positive constant. By
solving the above equation for the control input using (A.1),
we obtain the following expression for u(t) which is called the
equivalent control, ueq:

ueq(t) = 1

ĝ(x, t)
· (−f̂ (x) + ẍd (t) − 2λė(t) − λ2e(t))

= 1

ĝ(x, t)
· û(t). (A.6)

The equivalent control keeps the system states in the sliding
surface s = 0 if the dynamics were exactly known. Hence, if
the state is outside the sliding surface, to drive the state to the
sliding surface, we choose the control law such that

1

2

d

dt
s2 � −η |s| , (A.7)

where η is a strictly positive constant and (A.7) is called the
reaching condition. The control objective is to guarantee that
the state trajectory can converge to the sliding surface. It can
be proved that the control law

u1(t) = 1

ĝ(x, t)
· [û(t) − k · sgn(s)] (A.8)

with k � v + η satisfies the sliding condition (A.7) [44].
This control law leads to high-frequency control switching

and chattering across sliding surface. The chattering caused
by the high-frequency switching control activity is highly
undesirable and is not acceptable for the control of functional
electrical stimulation and may excite unmodeled high-
frequency plant dynamics which could result in unpredictable
instability. To overcome this problem, the SMC strategy
deserves special attention, because this method provides a
systematic approach to maintain asymptotic stability and
consistent performance.
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