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Using Evoked EMG as a Synthetic Force Sensor
of Isometric Electrically Stimulated Muscle

Abbas Erfanian,* Howard Jay Chizeck,Senior Member, IEEE, and Reza M. Hashemi

Abstract—A method for the estimation of the force generated
by electrically stimulated muscle during isometric contraction is
developed here. It is based upon measurements of the evoked
electromyogram (EMG) [EEMG] signal. Muscle stimulation is
provided to the quadriceps muscle of a paralyzed human sub-
ject using percutaneous intramuscular electrodes, and EEMG
signals are collected using surface electrodes. Through the use
of novel signal acquisition and processing techniques, as well as
a mathematical model that reflects both the excitation and acti-
vation phenomena involved in isometric muscle force generation,
accurate prediction of stimulated muscle forces is obtained for
large time horizons. This approach yields synthetic muscle force
estimates for both unfatigued and fatigued states of the stimulated
muscle. In addition, a method is developed that accomplishes
automatic recalibration of the model to account for day-to-day
changes in pickup electrode mounting as well as other factors
contributing to EEMG gain variations. It is demonstrated that
the use of the measured EEMG as the input to a predictive
model of muscle torque generation is superior to the use of the
electrical stimulation signal as the model input. This is because
the measured EEMG signal captures all of the neural excitation,
whereas stimulation-to-torque models only reflect that portion
of the neural excitation that results directly from stimulation.
The time-varying properties of the excitation process cannot be
captured by existing stimulation-to-torque models, but they are
tracked by the EEMG-to-torque models that are developed here.
This work represents a promising approach to the real-time es-
timation of stimulated muscle force in functional neuromuscular
stimulation applications.

Index Terms—Artifact suppression, evoked EMG, functional
neuromuscular stimulation, muscle fatigue, muscle modeling.

I. INTRODUCTION AND BACKGROUND

FUNCTIONAL neuromuscular stimulation (FNS) can be
used to achieve limited restoration of the function of

paralyzed muscle. This technology has been used to provide
hand grasp to C5–C6 spinal-cord-injured individuals, respira-
tory pacing for higher level spinal cord injuries, and standing
and locomotion for paraplegic and hemiplegic subjects (due
to spinal cord injury, stroke, head injury, and other causes),
and micturition, bladder, and bowel control. A survey and
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compilation of the progress in this field is contained in Stein
et al. [1].

Improved performance of theseneuroprosthesescan, in
principle, be obtained through better real-time models of
muscle response, either for feed-forward or feedback control.
This involves measuring forces, angles, positions, or other
appropriate quantities to modify models of the force generation
behavior of stimulated muscles. A limiting factor has been
the inadequacy of sensors [2], [3]. Sensors for external use
are difficult to mount and calibrate, and generally do not
directly measure the quantities of interest. In almost all cases,
implantable sensors are not available. The use of afferent
signals obtained from nerve cuff [4]–[7] or action poten-
tials from peripheral nerves (intrafascicular electrodes [8]) is
promising, but significant signal processing problems remain
to be resolved.

The standard external methods of measuring muscle force
in experimental settings (e.g., see [9] and [10]), which in-
volve motion against fixed test equipment, are not useful
for neural prostheses outside of the laboratory. Surgically
installed sensors that have been used in animal experiments to
characterize muscle properties, such the placement of a force
transducer in series with a tendon [11] or the attachment of
a buckle transducer to the tendon [12], are not acceptable for
rehabilitation in human subjects since they involve damage
of the tendon. The introduction of a pressure catheter into the
muscle in order to measure the intramuscular pressure [13], has
been shown to give good muscle force estimates in the case
of voluntary contraction in the unfatigued state. However, this
method will probably be confounded by compliance changes
in the fascial compartment of the muscle due to different
contraction regimes. Also it has not been tested in electrically
stimulated muscle. Thus, no adequate muscle force sensors are
currently available for deployment in neuroprostheses. This
motivates the development of methods to estimate muscle
force from quantities that can be measured or well estimated,
such as the evoked electromyogram (EMG) [EEMG] and
muscle stimulation.This paper pursues the use of EEMG from
stimulated muscle.The focus of this paper is the development
of real time estimates of electrically stimulated muscle output
torque from EEMG.

Voluntary and artificial contraction of muscle are accom-
panied by both electrical and mechanical phenomena, as
manifested by electromyogram and force. Over the past four
decades, an extensive literature has resulted from investiga-
tions of EMG signals arising from voluntary contractions, as
a source of information about muscle force, length, or fatigue
state. For example, the dynamic relationship between isometric
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tension and the electromyogram is described by a second-order
linear system [14]. In [15], this relationship is characterized
by Hill-based model, where the smoothed rectified EMG and
joint angle are the inputs of the model and the output is force.
In [16], this filtered EMG signal is used to estimate ankle and
knee moments during walking.

The characterization of the relationship between EEMG
and muscle torque in electrically stimulated muscle has not
been extensively studied. In [17] it was shown that there
exists a nearly linear relationship between the mean-absolute
value (MAV) of EEMG and isometric force, when cat muscle
is stimulated via cuff electrodes and EEMG is recorded by
intramuscular electrodes (for a specific stimulation pattern).
Other studies in the literature reported changes in the MAV of
the EEMG that appear to be associated with isometric force
changes, but do not describe functional relationships between
these variables [18], [19].

Although a large number of mathematical models of electri-
cally stimulated muscle have appeared (as reviewed in [23]),
these efforts have not resulted in predictive models of muscle
force that can be used for real-time control in neuroprostheses.
There is no available model that accurately predicts muscle
force on the basis of EEMG.Models that predict muscle force
from stimulation information [10], [11], [24] do well for short
prediction time intervals, but exhibit normalized output predic-
tion errors of 15% or greater for prediction of times that are
more than 0.5 s in the future [10], even when they are allowed
to generate time-varying parameter estimates. Although such
identified models can be useful in adaptive controllers [25],
[26], they are not accurate enough for the careful coordinated
control of groups of muscles in multijoint systems.

In this paper, we develop a method for estimating the torque
generated by electrically stimulated muscle during isometric
contraction based upon measurements of the EEMG. Muscle
stimulation is provided to the quadriceps muscle of paralyzed
human subjects using percutaneous intramuscular electrodes,
and EEMG signals are collected using differently mounted
surface electrodes. Through the use of appropriate signal
acquisition and processing techniques, as well as a mathe-
matical model that reflects both the excitation and activation
phenomena involved in isometric muscle force generation, we
can obtain accurate prediction of stimulated muscle torque
for large time horizons. For muscle that is not fatigued, this
approach yields synthetic muscle torque estimates for any
stimulation pattern. For fatigued muscle, it provides excellent
torque estimates if the muscle is either maximally stimulated,
or submaximally stimulated by a cyclically repeating pattern.

A. Experimental Procedure

Experiments were conducted on two complete-level-T7
spinal cord injury paraplegics (six years and 18 years post
injury). The subjects were active participants in a rehabilitation
research program involving daily electrically stimulated
exercise of their lower limbs (either seated or during standing
and walking), as described in [27]. Percutaneous intramuscular
electrodes were implanted near the motor points of the major
lower limbs as described in [28]. During the experiments
reported here, only the lower limb vastus lateralis muscle

was stimulated, by activating merely the corresponding
intramuscular electrode. The muscle was stimulated using
pulse-width modulation at a constant frequency (20 Hz) and
constant amplitude (10 mA), under isometric conditions. The
knee of the test leg was fixed securely in 30of flexion
(where full extension is 0).

Isometric knee torque was measured using a Cybex II
dynamometer. The subject was seated on the bench of Cybex
machine, with his hip flexed at approximately 90and his thigh
held against the seat with a restraining strap. An instrumented
torque arm (having a set of strain gauges) was used to measure
the isometric muscle torque. Calibration of the sensors was
done to remove the effects of passive torque and loading. Mea-
sured values of the knee torque were lowpass filtered (cutoff
frequency 100 Hz), and sampled at 1200 Hz. The sampled val-
ues were then subdivided into blocks with each block contain-
ing 60 data points (i.e., the number of data points over each pe-
riod of stimulation). The measurements within each block were
then averaged. EEMG data were collected by a differential
amplifier with a common mode rejection ratio of 120 dB and
bandwidth of 250 kHz, and then sampled at a rate of 1200 Hz.

Stimulation Input Patterns:The choice of stimulation input
pattern can affect the identification of parametric models of
electrically stimulated muscle, since persistent excitation is
required for identification algorithm convergence [29]. We
used six types of input patterns in this study. Two stochastic
patterns were used for dynamic model parameter identification.
They were chosen to guarantee persistent excitation.

The first pattern consisted of a succession of 1-s-long sets of
20 pulses, where the first ten pulsewidths were increased from
a fixed minimum value to a randomly determined maximum
value, and then the next ten pulses symmetrically decreased.
The maximum pulse width (for the tenth pulse in each set)
was randomly chosen to vary between 0 and 25s, according
to a uniform distribution.

In the second stimulation pattern, sets of ten pulses were
delivered, where these pulses monotonically increased or de-
creased in pulse width. Both the initial and final pulse width
values were randomly selected (uniformly distributed between
0 and 25 s). The increment between each successive pulse
width was the same in this second stimulation pattern.

The third type of stimulation pattern consisted of a 2.5-s
sequence of constant pulsewidths. The fourth type of stimula-
tion pattern was a 2.5-s sequence of monotonically increasing
pulsewidths. These two stimulation patterns were used to study
the transient dynamics and recruitment characteristics of the
electrically stimulated muscle.

Finally, two stimulation patterns were used for investiga-
tion of potentiation and fatigue processes. The fifth type of
stimulation pattern was a 5-min sequence consisting of a
periodic ramp-and-hold signal (period 25 s). The sixth type
of stimulation pattern consisted of a 5-min-long sequence of
constant pulsewidths. Figs. 1, 8, and 9 illustrate examples of
these input stimulation patterns.

II. A RTIFACT SUPPRESSION

The recording and processing of the EEMG in electrically
stimulated muscle present technical difficulties, due to the need
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(c) (d)

(e)

Fig. 1. Typical examples of the stimulation patterns: (a) first type; (b) second type; (c) third type, consisting of a 2.5-s sequence of constant pulsewidths;
(d) another example of the third type; and (e) fourth type, consisting of two 2.5-s sequences of monotonically increasing pulsewidths.

to suppress the stimulus artifact. The stimulus artifact results
from the potential difference between the EEMG recording
electrodes. This potential is produced by the electric field of

the stimulus current source. The shape of stimulus artifact
depends upon the shape of stimulus pulse, the source-field
distance, the amount and type of tissue between the stimulus
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Fig. 2. Illustration of the EEMG recording procedure. The recording electrodes are placed on the skin surface symmetrically, with respect to the point
current source inside of the body. This symmetric placement reduces the stimulus artifact. In addition the induced electric field of the point current
source is dampened by a pair of patch ground electrodes, which are put on the skin parallel to the recording electrodes. The interelectrode spacing is
3 cm with 5-mm-diameter EMG electrodes.

source and recording electrode sites, as well as the orientation
of recording electrodes.

Several different methods for the elimination of stimulus
artifacts appear in the literature. In [20], for cat muscles
stimulated by nerve cuff electrodes and EEMG recorded by
intramuscular electrodes inserted in the belly of the muscle,
the stimulus artifact was suppressed by a lowpass Chebyshev
filter. When this method is used, the EEMG may be distorted
by low frequency components of the stimulus artifact.

Several methods of stimulus artifact suppression through
the use of signal blanking circuitry have been proposed. For
example, in [21] the stimulus artifact produced by a surface
voltage source stimulator was suppressed using a dead-zone
blanking circuit in cascade with a lowpass filter. In [22]
artifact suppression was attained for a current source surface
stimulator, based on switching the input of a dc amplifier to
earth during the stimulus pulses. In [32] a system was proposed
for suppression of the stimulus artifact, based upon the use
of a surface hybrid (voltage and current source) stimulator,
in combination with a slew rate limiter, and signal blanking.
The output of hybrid stimulator switched from current source
during pulses to voltage source in between pulses, in order
to shorten artifact transients. The actual artifact suppression
was accomplished by the slew rate limiter and signal blanking
circuitry.

A difficulty in the use of this type of approach is the need
to correctly set the timing of the circuitry for the artifact
suppression. Determination of the settings depends strongly on
the shape, frequency and width of the stimulation pulses, as
well as on the time delay between the stimulus and the artifact.

For pulse-width modulation involving long pulses or short
distances between the recording site and stimulation source,
the artifact and EEMG overlap. In this case, the above methods
do not work, because a part of the EEMG signal is itself
suppressed. For stimulus-period modulation, the timing of the
artifact suppression circuitry must be changed simultaneously
with changes in the frequency of stimulation.

In this work, we have developed a recording technique for
overcoming the stimulus artifact when the muscle was stim-
ulated by an intramuscular electrode. EEMG measurements
were acquired using two surface electrodes placed on the skin,
parallel to the long axis of the muscle, over the bulk of the
vastus lateralis. The skin directly under the surface electrodes
was cleaned by alcohol, in order to reduce the impedance
between the recording surfaces and the signal sources. In
order to avoid electrode movement and loose contacts, the
electrodes were secured to the skin with adhesive tape. By
careful placement of these electrodes and the EEMG ground
electrode, and through the use of differential signal processing
methods, the stimulation artifact was removed and a single
EEMG signal was obtained. These procedures, which we call
artifact balancing,are described below.

Artifact Balancing: There are three principal procedural
concerns involved in this approach. They are the following.

1) Positioning of the surface electrodes.
2) Selection of pick-up electrode size and interelectrode

spacing (a bandwidth issue).
3) Placement of patch-ground electrodes.

The principle of this method is as follows: Let and be
the induced electric potentials of the pointsand on the
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Fig. 3. (a) Pulse shape of the stimulation signal. (b) Measured EEMG when
one recording electrode is placed over the bulk of the lower-limb vastus
lateralis muscle and the other over the most distal portion of the muscle. (c)
and (d) EEMG obtained with a 3-cm interelectrode spacing and a single ground
between them. (e) EEMG obtained with the artifact balancing procedure.

body surface due to the point source of a current stimulator
inside the body. Then the stimulus artifact voltage is given by

Positioning: Here, and are source-field distances. If
the source-field distances and are equal, then we would
expect that the electric potentials and would be almost
the same, and the stimulus artifact would be extremely small.
Since the stimulation electrode is implanted near the muscle
motor point, careful placement of the recording electrodes on
the muscle surface can achieve this equivalence of source-field
distances. If the distance between the recording electrodes is
small, then the source-field distancesand are approxi-
mately equal and consequently . That is, the artifacts
are balanced and, thus, cancel each other. However, reducing
the interelectrode spacing is limited by the wavelengths of
the muscle-fiber action potentials, by the lowpass-filtering
properties of the intervening tissue and by the lowpass-filtering
properties of the electrodes themselves.

Size: Larger electrodes provide higher signal-to-noise ratios
(SNR’s) and lower cutoff frequencies than smaller electrodes
[30]. Selection of the diameter of the pick-up electrodes

involves a compromise between the desired SNR and the
desired bandwidth.

Placement: We damp the induced electric field of the point
current source with a pair of patch-ground electrodes which
are put on the skin, parallel to the recording electrodes. A
diagram illustrating this EEMG recording procedure is shown
in Fig. 2.

Results of Artifact Suppression:In order to illustrate that
this artifact suppression method works, we first sample the
EEMG at 20 kHz. Fig. 3(b) shows the EEMG obtained when
one electrode was placed over the bulk of the lower limb
vastus lateralis muscle and the other over the most distal
portion of the muscle. Fig. 3(c) and (d) shows the EEMG with
a 3-cm interelectrode spacing and a single ground between
them. The improvement seen in Fig. 3(d) is due to better
pick-up electrode placement. The results presented in Fig. 3(e)
demonstrate the stimulus artifact reduction obtained by the
symmetric placement of the EEMG electrodes, with respect to
the stimulating electrode (and with symmetric placement of the
grounds). A 3-cm interelectrode spacing and 5-mm diameter
EMG electrodes were used, in the configuration shown in
Fig. 3.

Fig. 1(a) shows the processed measurements obtained when
the first type of stochastic input stimulation pattern is used.
The Cybex torque measurements have been processed as
described earlier, and the EEMG was obtained using the
artifact-balancing method. Fig. 1(b) illustrates the analogous
data when the second type of stochastic input pattern is
used. Fig. 1(c) and (d) shows the EEMG and torque gener-
ated by a sequence of constant width pulses. Note that the
torque and the EEMG rise times track each other quite well.
However, due to the properties of the mechanical load, the
passive mechanical properties of muscle and muscle latency,
torque continues to be generated after the EEMG ceases.
Fig. 1(d) is quite revealing, in that the “ragged” torque re-
sponse closely matches changes in the EEMG. Fig. 1(e) shows
ramp responses. Note that although the same input pattern
is repeated, both the EEMG and the torque signals show
considerable variation. However, as will be discussed later,
the EEMG and torque signals are highly correlated. These
figures suggest that the measurements of the EEMG might be
used to predict the torque. This conjecture is investigated in
Section III.

III. I DENTIFICATION OF MUSCLE TORQUE MODELS

We can use the torque measurements, information about the
stimulation signal and the EEMG measurements (as obtained
using the methods described above) to identify the parameters
of mathematical models of muscle torque production. Three
types of models are considered here 1)contraction dynamics
model, relating the EEMG to measured torque (EEMG-to-
torque model); 2)excitation dynamics model,relating the
stimulation to the measured EEMG (stimulation-to-EEMG
model), 3)overall muscle dynamics model,relating stimulation
to the torque that is generated (stimulation-to-torque model).
Fig. 4 schematically illustrates these three situations. Note that
muscle contraction is the result of neural excitation due to
stimulation signal as well as from other sources, such as reflex
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Fig. 4. Diagram illustrating the modeling factors considered in this work; thecontraction dynamics model, relating the measured EEMG to measured
torque; theexcitation dynamics model, relating the stimulation to the measured EEMG; and theoverall muscle dynamics model, relating the stimulation
to the resulting torque.

and spasticity. The measured EEMG reflects this combination,
filtered by the electrical properties of tissue and the pick-up
electrodes. Of course any change in the location of the stimulus
electrode may cause the level of activation to change.

The literature regarding identification of models of electri-
cally stimulated muscle is quite large (e.g., see [1], [10], [11],
[24]). The innovation in this work is the explicit consideration
of both the excitation and the contraction dynamics.

Contraction Dynamics Model:To capture the contraction
dynamics, a Hammerstein model was used. This consists of
two subsystems in cascade. The first subsystem is a memory-
less nonlinearity (approximated by a polynomial). The second
subsystem is a linear dynamic system. This approach has been
used for identification of the muscle dynamics, including the
recruitment nonlinearity of intramuscular electrodes, when the
model input is the stimulation [10]. In this work, we apply it
when the model input isthe mean-absolute value(MAV) of
the EEMG.

The linear part of the Hammerstein model is chosen to
be a deterministic autoregressive moving average (DARMA)
model, which can be described in operator notation [29] as

(1)

where

(2)

Here, is the muscle output torque at time, is the
activation level of the muscle at time, and is the backward

shift operator. The activation level is modeled as anth-order
polynomial function of the instantaneous EEMG signal, ,
by

(3)

Substituting (2) and (3) into (1) and expanding

(4)

where

Measured values of the muscle torque and the MAV of the
EEMG are used to fit parameters of model (4). Theterm
is used to fit any offset in the output (that is, a nonzero output
corresponding to a zero EEMG input). In this application,
due to the deadband associated with the EEMG pickup and
amplification, such an offset can occur.

Identification of the Model:A key stage of identification of
the unknown parameters (, ) is selection of the model-
order parameters ( ). In this work, different choices of the
model-order parameters were assumed, and then the resulting
model was identified [that is, values of the (, ) were fit
from measured torque and measured EEMG data]. Standard
weighted recursive least-squares (RLS) methods were used to
fit these parameters [29].

During each experiment day, 30 trials were conducted.
In these trials, the second type of stimulation input pattern
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 5. (a) The measured (solid line) and predicted (dotted line) torque obtained using themuscle contraction dynamics model. The prediction is based on
the measured EEMG and past predicted torque [ŷp(t)], for two successive trials of the five trials that provided data for model fitting. The markers within the
figures indicate the end of the one trial, and the beginning of the next; (b) the same information as in (a) when prediction is based on the measured EEMG and
past measured torque [ŷm(t)]; (c) and (d) the measured and predicted torque when the predictorsŷp(t) and ŷm(t) are used, respectively, for data obtained
in two trials that were not used to fit the model; (e)–(h) the same information as in (a)–(d) when the stimulation-to-torque model is used.

(described in Section I) was used. There were three separate
experiment days, each following the same sequence of trials.
Model parameters were identified for each day. One concern
in using recursive methods to identify these parameters is the
need to have a long enough run of successive inputs (and their

corresponding outputs). In this work, the duration of each trial
was 5 s. Thus, 100 points were available, per variable, in
each trial. Each trial began and ended with an interval of no
stimulation. Thus, if desired, data from successive trials (or
other different trials) could be concatenated for purposes of
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TABLE I
SUMMARY OF THE AVERAGE DAILY PREDICTION ERROR (150 s) OBTAINED FOR BOTH THE CONTRACTION

DYNAMICS MODEL (EEMG-TO-TORQUE) AND THE OVERALL DYNAMICS MODEL (STIMULUS-TO-TORQUE)

Note that on each day, the identified contraction dynamics model provides better predictions of the output torque than the
overall model. Herêem andêp are the mean-square prediction errors based on the predictorŷm(t) or ŷp(t), respectively.
The predictorŷm(t) is based on the input (stimulation for overall model and measured EEMG for contraction model)
and the past predicted measured. The predictorŷp(t) is based on the input (stimulation for overall model and measured
EEMG for contraction model) and the past predicted torque.

TABLE II
SUMMARY OF THE AVERAGE DAILY PREDICTION ERROR (70 s) OBTAINED FOR BOTH THE EXCITATION

DYNAMICS MODEL (STIMULUS-TO-EEMG) AND THE CONTRACTION DYNAMICS MODEL (EEMG-TO-TORQUE)

identification. In order to limit fatigue, a resting period of 1
min was enforced between each 5-s trial.

We chose to represent the recruitment curve of muscle as
a third-order polynomial, ( ), as in [10]. Model-order
determination was accomplished by comparing the Akaike’s
final predication-error criterion (FPEC) [29] obtained, for
different model orders. Model-order parameters ranging from

, and from were considered. We
found that the FPEC was minimized by model order ( ,

). The same values were obtained for all three days.
The FPEC was used, rather than the more common Akaike’s
information-theoretic criterion, because no information about
the underlying distribution of stochastic process was assumed.
The FPEC provides a combined measure of fitting error and
over-parameterization.

Model Validation: The credibility of the identified model
can be determined by its ability to predict the outputs that
result from different inputs. For a muscle response model,
an additional consideration in determining the appropriateness
of the model is its ability to predict muscle torque under a
variety of conditions. We use themean-square error(MSE) as
a performance index for measuring the quality of prediction,
as follows:

MSE

where is the output muscle force at time, and is the

model output based on the identified parameters. There are two
possible versions of that can be used in this measure. One
approach is to compute as a function of pastmeasured
values of the muscle output and measured EEMG

This might be called “one step ahead” prediction. The second
approach is to compute as a function of measured EEMG
and pastpredictedvalues of the muscle output

The use of the first approach begs the issue of model valida-
tion, since the prediction capability of the identified model is
not tested (instead, measuredvalues are used). The second
approach explicitly captures identified model performance,
since it explicitly uses predicted output values. However, for
model-order determination, the one-step method is preferred,
since we avoid correlation with past predictions. From practi-
cal point of view, the one-step ahead prediction is irrelevant,
because the torque measurements are not available. There are
two versions of mean-square prediction error, depending upon
which version of is used; is based on ; is
based on .

We concatenated data from five successive trials, in order to
identify the complete set of model parameters. The resulting
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identified model was then validated using the data collected
from the other 25 trials conducted on that experiment day.

Fig. 5(a) shows the measured and predicted torque, obtained
using the , for two successive trials, of the five trials that
provided the data for model fitting. The markers within the
figures indicate the end of the one trial, and the beginning
of the next. Fig. 5(b) shows the same information when the
predictor is used. In both cases, good fits are obtained
(6% and 5% normalized MSE, respectively). Fig. 5(c) and
(d) shows the corresponding fits when this model is used for
two of the other trials on the same experiment day (i.e., not
with the same data that was used for the model identification).
Once again, good fits are obtained. Note that the two predictor
types achieve approximately the same amount of fitting error.
As expected, the fit obtained using additional measurements
is better. Similar results were obtained on the other two
experiment days.

Overall Muscle Dynamics Model:We next consider identi-
fication of a model relating the input stimulation signal to the
measured muscle torque. This was done using data collected
from the 90 trials described above. Using the stimulation
pulsewidths as the input values, different order Hammerstein
models were fit. In all cases, the polynomial order was
assumed to be three. Based on FPEC, the other model orders
were determined to be ( , ). It was observed that
using yielded the same FPEC. For model simplicity, the
lower order was chosen, as in our prior work [24].

The overall muscle dynamics model was identified using
the data collected from the five successive trials. The resulting
identified model was then validated using both information
updating schemes [i.e., and ]. That is, torque
prediction is based on the stimulation signal and past measured
values of the muscle output, when using , or past
predicted values of the muscle output, when using .
Fig. 5(e) and (f) illustrates the measured and predicted torque
outputs obtained during the same 5-s intervals as in Fig. 5(a)
and (b), using both predictor approaches but fitting an overall
muscle dynamics model. As before, both update approaches
yield good predictions, but the predictions that are obtained
using the additional measurements in are somewhat
better. Fig. 5(g) and (h) shows the measured and predicted
torque that are obtained using this model, for data obtained
in two 5-s trials that were not used to fit the model [the
same trials as in Fig. 5(c) and (d)]. Comparing these figures,
we see that the EEMG-to-torque model is far more accurate
than the stimulation-to-torque model, particularly when torque
measurement values are not available.

Table I summarizes the average daily prediction errors ob-
tained for both the contraction dynamics model (measured
EEMG-to-torque) and the overall model (stimulus-to-torque),
for both subjects. On each day, the identified contraction
dynamics model (measured EEMG-to-torque) provides bet-
ter predictions of the output torque than the overall model
(stimulation-to-torque). A possible explanation for this dif-
ference is that the measured EEMG signal reflects the total
neural input to the muscle. The EEMG includes components
that are not present in the stimulation signals. The stimulation-
to-torque model cannot capture the effects of these other,

(a)

(b)

Fig. 6. The measured (solid line) and predicted (dotted line) MAV of the
EEMG obtained usingmuscle excitation dynamics modelfor two successive
trials on the same day: (a) when prediction is based on the stimulation signal
and past measured EEMG; (b) when prediction is based on both the stimulation
signal and past predicted EEMG.

nonevoked EMG signals (reflecting spasticity or activation
of motoneurons due to reflex phenomena). It also cannot
capture changes in the recruitment properties of the stimulating
electrode, due to changes in muscle geometry that are induced
by contractions (or other time variations in the recruitment
characteristic). The predictive capability of the stimulation-
to-torque model is also damaged by any changes in the
excitation gain (from stimulation to EEMG) that might occur.
For example, changes in the stimulation electrode ground may
provide a source of variability which degrades the stimulation-
to-torque model predictions, but not the measured EEMG-to-
torque model.

IV. I DENTIFICATION OF THE EXCITATION SYSTEM

It is possible to fit parameters to model of the excitation
process (i.e., from stimulus to measured EEMG). The model
fitting was done using data obtained through application of
the first type of stimulation pattern described above. Using
a Hammerstein-type model and evaluation of the FPEC, the
best model-order parameters were found to be ( , ).
However, the FPEC values for (2,2) and (3,3) were quite close.
We used two approaches for prediction of EEMG; one is based
on the stimulation signal and past measured EEMG
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(a)

(b)

Fig. 7. The measured and predicted torque obtained usingmuscle contraction dynamics model. The model was identified during a reference day and used
for prediction on different days. The prediction is based on the measured EEMG and past predicted torque [ŷp(t)], for five successive 7-s trials: (a) prediction
on second daywithout autocalibrationand (b) prediction on second daywith autocalibration.

TABLE III
SUMMARY OF THE RESULTS OFMUSCLE TORQUE PREDICTION ON DIFFERENT DAYS, USING A FIXED PARAMETER CONTRACTION

DYNAMICS MODEL THAT HAS BEEN IDENTIFIED DURING A REFERENCEDAY. THIS REFERENCEMODEL IS THEN USED TO

PREDICT THE MUSCLE TORQUE OUTPUT ON DIFFERENT DAYS, WITH AND WITHOUT AUTOCALIBRATION. THE

TORQUE PREDICTION IS BASED ON THE MEASURED EEMG AND PAST PREDICTED TORQUE (ŷp(t))

The other one is based on the stimulation signal and past
predicted EEMG

Here, is the stimulation input, is the measured
EEMG, and is the predicted EEMG. Fig. 6 is a typical
example of the measured and predicted MAV of the EEMG,
when both prediction approaches are used. There is very
little performance difference using the two prediction ap-
proaches when identifying the excitation dynamics, as shown
in Table II.

From the identified system parameters (extracted from suc-
cessive trials on each of the five experiment days), the value

of the steady-state gain of the excitation model (stimulus-
to-EEMG) that is associated with a specific time-invariant
constant pulse width stimulation signal,, can also be com-
puted

Gain

where these “” and “ ” parameters are for the excitation
model. Note that this computed steady-state gain shows sig-
nificant day-to-day variation (Table II).

Using the identifiedexcitation modeland a knowledge of
the stimulation signal for a given muscle, we can predict the
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EEMG signal [ ] at future times. These predicted EEMG
signals can then be used in the identified contraction model, to
predict the generated muscle torque. Table II summarizes the
torque prediction error based on measured EEMG or predicted
EEMG on each day. The most interesting result of this analysis
is that the torque prediction error based on predicted EEMG
is about 6% for 70 s ahead.

V. AUTOCALIBRATION

One motivation for this work is the development of a
method for the estimation of muscle torque that does not
require a torque sensor. This is a concern in neuropros-
theses development, because torque sensors are generally
either unavailable or difficult to apply in a way that is
consistent with clinical application. As shown above, the use
of EEMG-to-torque models (rather than stimulation-to-torque
models) is clearly preferable, if the EEMG measurements are
available, because of the superior prediction accuracy that can
be obtained.

The application of torque prediction models for controlled
functional neuromuscular stimulation requires that the models
work well from day to day. From the results described above,
it is clear that the identified model parameters change between
days. In particular, the gains of both the excitation dynamics
and contraction dynamics exhibit considerable variability.

There are several possible sources for the observed day-to-
day variation. Referring to Fig. 4, there may be day-to-day
variations in the nonevoked components of the total neural
excitation signal. Since electrode mounting and placement will
differ between experimental sessions, this pathway will suffer
from day-to-day variations. In addition, there will be day-
to-day variations in the excitation gain, that relates neural
excitation to the motor unit action potentials. Fatigue and
patient’s status (e.g., urinary tract infections) are factors that
might cause changes in the activity of the excitation process as
well as changes in the contraction process. Moreover, there are
day-to-day variations in the activity of stimulated muscle due
to fiber-type conversion which may occur during chronic stim-
ulation [33]. Manifestation of fiber-type conversion appears in
the EEMG as well as torque.

Compensation for EEMG Electrode Variability:In this sec-
tion, we develop a method of model autocalibration that
compensates for changes due to EEMG electrode variability.
The procedure is as follows. During areference day,the
excitation model is identified, as described above, and the
steady-state response to the reference input is computed. This
reference gain, , is identified using data that is collected
when the muscle is exhibiting a constant gain, after completion
of potentiation and before the onset of excitation fatigue.
During subsequent operation on a different day, a new value
of the stimulus-to-EEMG gain is similarly computed (from
knowledge of the stimulation and the measured EEMG). Di-
vision yields a calibration factor that reflects a combination of
changes in EEMG electrode pick-up properties and excitation
properties; that is

Although and were obtained from the identified model

(a)

(b)

(c)

(d)

Fig. 8. (a) Five-min sustained constant pulse width input. (b) Corresponding
normalized measured torque and the MAV of the normalized measured EEMG.
(c) The normalized measured torque (solid line) and predicted torque (dotted
line), using a fixed parameter contraction dynamics model that was identified
during a previous day’s experimental trial, on the same subject. (d) Prediction
error. The mean-squared prediction error over the 5-min trial is about 7%.

of the excitation process, thisfactor captures changes in the
relationship between the total neural signal (from all sources)
and the measured EEMG.
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(a)

(b)

(c)

(d)

Fig. 9. (a) Portion of a 5-min input consisting of a periodic ramp-and-hold pattern. (b) Corresponding MAV of the measured EEMG. (c) The measured
torque and predicted torque, using a fixed parameter contraction dynamics model that was identified during a previous day’s experimental trial, on the
same subject. (d) Torque prediction error.

During the reference day, an EEMG-to-torque model is also
identified, using the methods described earlier. During other
sessions, when torque measurements are not available, the
EEMG-to-torque model that was fit during the reference day
is used to predict the muscle torque, whereas the model input
is multiplied by the calibration factor, , to compensate for
changes in the EEMG pickup.

The effectiveness of this calibration procedure is illustrated
in Fig. 7(a) and (b), which shows the torque prediction during
35 s without calibration and with calibration, respectively.

The improvement provided by this calibration is quite evident.
Table III summarizes the results of muscle torque prediction
on different days, using the identified model from the reference
day.

VI. POTENTIATION AND FATIGUE

Using the methods described above for contraction dy-
namics identification, we can obtain a fixed parameter model
that is capable of predicting the output torque resulting from
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(a) (b)

Fig. 10. The changes in the dynamics of muscle behavior due to fatigue
during sustained stimulation: (a) excitation dynamics and (b) contraction
dynamics. The arrows denote the direction of “movement” of thez-plane
poles.

measured EEMG, despite potentiation and fatigue phenomena.
This is significantly different than earlier work involving
stimulation-to-torque models, where the model parameters had
to be time varying [11], or where an explicit fatigue model
had to be included [31].

Fig. 8 illustrates the actual measured torque and predicted
torque, using a fixed parameter contraction dynamics model
that was identified during a previous day’s experimental trial,
on the same subject. The autocalibration procedure was used.
Over a period of 5 min of sustained stimulation, the torque
reduction that occurs after one-half min is well tracked by the
model. That is, the majority of the torque changes can be well
predicted from the EEMG measurements, without adjusting
the contraction dynamics model.

Fig. 9 illustrates portions of a 5-min trial. In this case, the
stimulation and consequently the EEMG was varied. From
time 10 to 60 s, the fixed parameter model (identified during
a prior day’s experiments) underestimates the output torque
slightly, due to contraction potentiation. After time 160, it
overestimates it slightly due to maximal contraction fatigue.
However, the majority of the potentiation and fatigue response
is captured by the fixed parameter contraction dynamics model.
Moreover, the transient increases and decreases in torque that
correspond to large changes in EEMG are very well tracked.
In some instances when the stimulation rapidly increases,
there is a corresponding burst of EEMG, and consequently
a brief period of over-estimation of torque (at 124 s). An
interesting phenomenon appears after 120 s, when the amount
of oscillation of both the EEMG measurements and corre-
sponding torque increases. At 140 s, for a very short time
the neural excitation and consequently the torque, suddenly
decreased for unknown reasons; however, the model follows
this variation.

VII. FATIGUE DYNAMICS

The separate identification of the excitation process and
the contraction process can be used to explore the dynamics
of fatigue phenomena. In particular, it is possible to relate
observed changes in muscle response to changes in each of
these two processes. In the model identification described
in previous sections, constant parameter models were fit. In

this section, we consider the identification of time-varying
parameters, during intervals of sustained stimulation.

The identification of model parameters of the excitation
process (i.e., stimulus as input and MAV of EEMG as output)
is difficult when a constant stimulus input is used. This input
does not provide a sufficiently exciting signal. However, we
can fit an autoregressive model (third order) to the measured
EEMG. This will allow us to obtain the poles of the excitation
process system. This was done using weighted recursive least-
squares methods.

Fig. 10(a) shows the movements of the-plane poles of
the resulting excitation model. The poles move during poten-
tiation in a path that indicates increasing damping ratio and
increasing natural frequency. During the onset of fatigue, the
damping ratio decreases, the natural frequency increases and
the oscillatory behavior of the muscle increases. However,
during maximal fatigue, there is a decrease in the damping
ratio and the natural frequency. The decrease in the natural
frequency suggests a decrease in the firing rate. Normally, the
firing rate depends on the stimulation frequency. However,
when maximally fatigued, the firing rate is no longer so tightly
coupled with the stimulation frequency, as shown in Fig. 11(c).
The change in damping ratio corresponds to rapid system
response. These results are consistent with the raw EEMG data
obtained during unfatigued, fatigued, and maximally fatigued
conditions, as shown in Fig. 11. Prolongation, enlargement,
and decreasing the amplitude of the EEMG during fatigue is
evidence of an increase in the damping ratio of the system.

Additionally, a third-order autoregressive model of the
contraction dynamics was fit to the measured torque col-
lected during sustained stimulation. Weighted recursive least-
squares methods were used for model identification. This
again resulted in time-varying model parameters that could be
interpreted as time-varying poles, zeros, and gain of a linear
system. In Fig. 10(b) the locations of these poles are indicated.
The arrows denote the direction of “movement” of the-plane
poles. Note that during sustained stimulation, the oscillatory
nature of the contraction dynamics initially decreases (and the
pair of complex poles become real values). However, after
a longer period of sustained stimulation, oscillatory response
returns, at much higher frequencies. This is consistent with the
overall response of the muscle during sustained stimulation,
as shown earlier in Fig. 9.

VIII. D ISCUSSION

This work is concerned with developing a force-generating
model of electrically stimulated muscle under isometric con-
ditions, where the EEMG is used as the input to the model.
Unlike voluntary contraction of muscle, in the electrical stimu-
lation used here, the recruited motor units depolarize synchro-
nously. Thus, the EEMG of the electrically stimulated muscle
is the synchronous summation of the recruited motor unit
action potentials. It explicitly describes motor unit recruitment
and firing rate. In particular, many unpredictable disturbances
of the neuromuscular system (e.g., reflex phenomena, spastic
paralysis, interaction with environment, changes in stimulus
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Fig. 11. One-half s of raw EEMG data obtained during unfatigued, fatigued, and maximally fatigued states.

electrode gain, F wave and H wave response, and excitation
fatigue) are reflected in the EEMG signal. The use of the
EEMG as a model input allows for the tracking of the torque-
generation consequences of these phenomena. In this work we
have demonstrated that the use of the measured EEMG as
the input to a predictive model of muscle torque generation is
superior to the use of electrical-stimulation signals. Although
the EEMG-based method presented here captures most of
variability that is manifested when the electrical stimulation
signal is used, the predictability of the resulting identified
model when the muscle experiences the fiber-type conversion,
which occurs during chronic stimulation, should be evaluated.

The success of this approach depends upon accurate, stable,
and reliable measurement of the EEMG signal. In this paper, a
procedure for recording surface EMG without stimulus artifact
is proposed, when the muscle is stimulated by intramuscular
electrodes. The key feature of this procedure is that arti-
fact suppression is accomplished without special filtering or
switching circuitry, and that it is applicable for both real time
pulse-width and stimulus-period modulation. However, the
technique requires the knowledge of the approximate position
of the intramuscular stimulation electrode, as well as careful
placement of surface recording electrodes. Some trial and error
experiments may be required in order to determine the suitable
electrode size and electrode distances.

The results presented here have been verified only for
isometric contractions at one joint angle. The extension of
this work to non isometric conditions remains unresolved. In
this work, torque prediction is provided when vastus lateralis
muscle is stimulated, by activating the corresponding intra-
muscular electrode. However, in general, FNS will involve the

contributions of several muscles to the net torque of each joint.
The method proposed here must be extended for multimuscle
use.
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