Photodegradation of acetophenone and toluene in water by nano-TiO₂ powder supported on NaX zeolite

Ehsan Amereh, Shahrara Afshar

College of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran

1. Introduction

Nowadays the natural water resources are exposed to danger by a variety of hazardous chemical substances derived from man-made products. The injurious effects of chemicals on the earth's ecosystems are a cause for serious concern [1–6].

Effective treatments of toxicity pollutants have been required as part of water applications. During the past two decades, photocatalytic oxidation of organic contaminants has become attractive as a promising chemical procedure for water purification with titanium dioxide (TiO₂) [3–8]. TiO₂ has been the most investigated material for the photocatalyst. The band gap of this “semiconductor” material is ca. 3.2 eV, which corresponds to radiation of wavelength around 380 nm [9]. Therefore, UV light with wavelength shorter than 380 nm is needed to excite the electrons of valence band to conduction band. The electron–hole pairs thus generated serve as the oxidizing and reducing agents. In photodegradation of pollutants in water, ·OH radicals formed either through the interaction of water molecules with the holes or through the interaction of O₂ with the host electrons, are the key active species [10,11].

TiO₂ photocatalysis is effective for the decomposition of various organic contaminants in water. The efficiency of TiO₂ was reported to be influenced by many factors, such as crystalline structure [12–14], particle size [13,15–17], and preparation methods [18,19]. However, its practical application in aqueous media is limited, because of the difficulty of filtration and recovery of very small TiO₂ particles. In addition, TiO₂ has a polar surface and is not a good adsorbent by itself for nonpolar organic molecules, so addition of support materials may enhance its catalytic activity. Therefore, recent researches have been directed toward immobilizing TiO₂ powders onto a suitable supporting matrix [20,21]. These efforts have also increased the TiO₂ surface area by dispersing nanoparticles of TiO₂ on large surface area materials. To the best of our knowledge, the support materials have been used are silica gels, active carbon, zeolites and clays [15,22–28].

In the present study, nano size TiO₂ particles were supported on a micro porous material, namely NaX zeolite. The objective of this study was to examine the effect of zeolite microstructures on properties of the supported TiO₂ for the degradation of acetophenone and toluene in water.

2. Experimental

2.1. Materials

The reactants used in this study were titanium tetrachloride solution (TiCl₄) as a titania source, sodium hydroxide (NaOH), nitric acid (HNO₃), toluene and acetophenone. All the chemicals were analytical grade and were purchased from Merck. Also NaX zeolite was obtained from SPAC Corporation, Iran.

2.2. Preparation of titanium oxide

Stable sols of TiO₂ nano-particles were synthesized following the method of acid hydrolysis of TiCl₄ as precursor. In this method, nano sized TiO₂ was synthesized by adding NaOH to titanium tetrachloride solution until the pH of solution was adjusted to 7 at room temperature. After washing the resulting white precipitate with deionized water until complete removal of chloride ions, the pH of the slurry...