29.Electron transport in graphene/h-BN lateral hybrids: Rhombus and bowtie domains
A Mehri, M Jamaati, A Namiranian
Superlattices and Microstructures, 109, 264 (2017) Q2
28.Electrical Conductance of a Zig Zag Carbon Nanotube in the Presence of a Few Vacancies Using Recursive Green's Function Method
F Rabbani, S Gowdini, A Namiranian
ECS Journal of Solid State Science and Technology, 6, M92 (2017) Q1
27.Role of interlayer spacing in electrical transport of bilayer graphene nanoribbon: Perpendicular and armchair direction
M Jamaati, A Namiranian
Superlattices and Microstructures, 101, 354 (2017) Q2
26.Differential conductance of armchair single-wall carbon nanotubes due to presence of electron–phonon interaction
F Tajik, A Namiranian
Physica E: Low-dimensional Systems and Nanostructures, 84, 79 (2016) Q2
25.Electron-phonon interaction in an $ N $-atomic 1-D periodic chain
M Zahidy, F Ghadirian, A Namiranian
arXiv preprint arXiv:1609.09131 (2016)
24.Random vacancy effect on the electronic transport of zigzag graphene nanoribbon using recursive Green's function
M Jamaati, A Namiranian
Computational Materials Science, 101, 156 (2015) Q1
23.The estimation of current and differential conductance of armchair single-wall carbon nanotubes via dissipative energy method
P Ayria1a, A Namiranian
Eur. Phys. J. B, 86, 4 (2013) Q2
22.Electronic features induced by Stone–Wales defects in zigzag and chiral carbon nanotubes
P. Partovi-Azara, S. Panahian Jandb, A. Namiranian, H. Rafii-Tabara
Computational Materials Science, 79, 82 (2013) Q1
21.Stone–Wales defects can cause a metal–semiconductor transition in carbon nanotubes depending on their orientation
P Partovi-Azar, A Namiranian
Journal of Physics: Condensed Matter, 24, 035301 (2012) Q1
20.ELECTRICAL RESISTIVITY MONITORING OF ROCK SAMPLES DURING UNIAXIAL COMPRESSION TEST
A GHORBANI, A GHARI HOSSEIN, A NAMIRANIAN
IRANIAN JOURNAL OF GEOPHYSICS, 6, 34 (2012)
19.Spectroscopy of phonon modes of a single-wall armchair carbon nanotube using measurements of nonlinear conductance: Theory
P Ayria, ANamiranian
Scientia Iranica, 18, 1609 (2011) Q3
18.Effect of magnetic impurity on spin-polarized transport in armchair single-wall carbon nanotubes
M Kariminezhad, M Kavand, A Namiranian
Physica E: Low-dimensional Systems and Nanostructures, 43, 97 (2010) Q2
17.The effect of the orientation of the Stone–Wales defects on the bands structure of carbon nanotubes
P Partovi-Azar1, A Namiranian
J. Phys.: Conf. Ser.,248, 012010 (2010) Q3
16.Effect of single magnetic atom on spin-polarized transport of armchair graphene nanoribbons
M Kavand, M Kariminezhad, A Namiranian
Solid State Communications, 150, 1537 (2010) Q1
15.Nonlinear conductance reveals positions of carbon atoms in metallic single-wall carbon nanotubes
P Partovi-Azar, A Namiranian
Eur. Phys. J. B, 72, 89 (2009) Q1
14.Nonlinear effect in conductance of a finite-length armchair single-wall carbon nanotube due to presence of a single impurity
P Partovi-Azar, A Namiranian
J. Phys.: Conf. Ser., 129, 012010 (2008) Q3
13.Nonlinear conductance in finite-length armchair single-wall carbon nanotubes with one single impurity
P Partovi-Azar, A Namiranian
J. Phys.: Condens. Matter, 20, 135213 (2008) Q1
12.Effects of band structure and quantum interference on the differential conductance of infinite metallic single-wall carbon nanotubes
M Bagheri, A Namiranian
J. Phys.: Condens. Matter, 19, 096207 (2007) Q1
11.Nonlinear conductance of a quantum microconstriction with single slow two-level system
A Namiranian, Ye S.Avotina, Yu A Kolesnichenko
Phys. Rev. B, 70, 073308 (2004) Q1
10.Quantum interference effect in the nonlinear conductance of metallic single-wall nanotubes
A Namiranian
Phys. Rev. B, 70, 073402 (2004) Q1
9.Conductance of metallic single-wall nanotube with single magnetic impurities
A Namiranian, S Jaffarzadeh
Physica E Low-dimensional Systems and Nanostructures, 22, 833 (2004) Q2
8.Voltage-dependent conductance and shot noise in quantum microconstrictions with single defects
Ye S Avotina, A Namiranian, and Yu A. Kolesnichenko
Phys. Rev. B, 70, 075308 (2004) Q1
7.Conductivity of a two-dimensional curved microconstriction
A Namiranian, M.R.H Khajehpour, Yu.A Kolesnichenko, S.N Shevchenko
Physica E: Low-dimensional Systems and Nanostructures, 10, 549 (2001) Q2
6.Modeling of tunneling spectroscopy in high-TC superconductors
Yu. M. Shukrinov, A. Namiranian and A. Najafi
Low Temperature Physics, 27, 10 (2001) Q3
5.The quantum conductance of ballistic microconstrictions in metals with an open Fermi surface
A. Namiranian, Yu. A. Kolesnichenko
Low Temperature Physics, 26, 513 (2000) Q3
4.The influence of single magnetic impurities on the conductance of quantum microconstrictions
A. Namiranian, Yu. A. Kolesnichenko
Low Temperature Physics, 26, 508 (2000) Q3
3.Effect of quantum interference in the nonlinear conductance of microconstrictions
A. Namiranian, Yu. A. Kolesnichenko, A. N. Omelyanchouk
Physical Review B, 61 (2000) Q1
2.Modeling of Tunneling Spectroscopy in HTSC
Yu. M. Shukrinov, A. Namiranian, A. Najafi
arXiv:cond-mat/0002077v1
1.Morphological examination of Cu 3 N thin film growth by a stochastic simulation
M Jabalameli, A. Namiranian